• Title/Summary/Keyword: Cognitive radio Communication

Search Result 336, Processing Time 0.011 seconds

Study on Cognitive Engine Platform Based on the Spectrum Sharing for the Military Tactical Communications (군 전술 통신에서의 주파수 공동사용 기반 인지엔진 플랫폼 연구)

  • Choi, Joo-Pyoung;Lee, Won-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.7
    • /
    • pp.599-611
    • /
    • 2016
  • This paper proposes a cognitive engine platform that enables dynamic spectrum access(DSA) based on a spectrum sharing system for the military tactical network environment. The current military tactical wireless communication system is increasing need to secure a supplementary wireless spectrum to ensure that multiple wireless networks for different weapon systems co-exist, so that tactical wireless communication between the same or different systems can be operated effectively. This paper examined policy development and research activities engaged by the U.S. and European countries on wireless spectrum sharing to secure more spectrum. It also introduces the current status of cognitive engine development, which is the core technology of tactical wireless communication for DSA. In addition, based on the investigation performed into the latest trends, we propose a platform structure for a cognitive engine based on a spectrum sharing method where more frequencies can be added for tactical radio communication, so that DSA can be realized, and wireless networks of different weapon systems can co-exist.

Policy-based Channel Sensing Architecture and Algorithms for Cognitive Radio Networks (지능형 무선 인지 기술 기반 네트워크 환경에서 정책기반 채널 센싱 구조 및 알고리즘)

  • Na, Do-Hyun;Hao, Nan;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.538-549
    • /
    • 2008
  • Recently IEEE 802.22 WG has considered Cognitive Radio (CR) technology to overcome shortage of communication channels. For using CR technology, accurate and rapid sensing method selection is extremely important. According to the channel sensing method, it is of the utmost importance because it can affect the incumbent system protection. So, optimum selection of channel sensing method is very important. IEEE 802.22 gives the solution, name of fine sensing, but the solution can not adapt to various networks. So in this paper we propose Policy-based Channel Sensing Architecture and Algorithms for Cognitive Radio Networks. The proposed channel sensing architecture and algorithms can reduce both primary system detection time and quiet time in our simulation. Among the proposed sensing algorithm, channel division round robin sensing reduce average detection time up to 70% compare to fine sensing method in IEEE 802.22.

Interference Minimization Using Cognitive Spectrum Decision for LED-ID Network

  • Saha, Nirzhar;Le, Nam Tuan;Jang, Yeong Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.2
    • /
    • pp.115-121
    • /
    • 2013
  • LED-ID (Light Emitting Diode-Identification) network is envisioned to be the next generation indoor wireless communication medium by which simultaneously high speed data transmission, identification, and illumination are possible. In spite of being extremely promising, it suffers from much impairment. Signals having different propagation paths can suffer from delays, and phase shifts which will eventually result interference. The probability of interference is also increased when communication links are established between a tag and several readers. Therefore it is necessary to reduce the interference in LED-ID network to ensure quality of service. It is possible to avoid interference by knowing the information about readers prior to assign the available spectrum. In this paper, we have proposed dynamic spectrum decision using cognitive radio concept. The simulation results justify that the proposed scheme is better than the conventional scheme.

Reinforcement Learning based Multi-Channel MAC Protocol for Cognitive Radio Ad-hoc Networks (인지무선 에드혹 네트워크를 위한 강화학습기반의 멀티채널 MAC 프로토콜)

  • Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1026-1031
    • /
    • 2022
  • Cognitive Radio Ad-Hoc Networks (CRAHNs) enable to overcome the shortage of frequency resources due to the increase of radio services. In order to avoid interference with the primary user in CRANH, channel sensing to check the idle channel is required, and when the primary user appears, the time delay due to handover should be minimized through fast idle channel selection. In this paper, throughput was improved by reducing the number of channel sensing and preferentially sensing a channel with a high probability of being idle, using reinforcement learning. In addition, we proposed a multi-channel MAC (Medium Access Control) protocol that can minimize the possibility of collision with the primary user by sensing the channel at the time of data transmission without performing periodic sensing. The performance was compared and analyzed through computer simulation.

Implementation of PLC System based on Spectrum Sensing Function (스펙트럼 센싱 기반 전력선 통신 시스템 구현)

  • Lee, Hyun-So;Nam, Yun-Ho;Hong, Moo-Hyun;Jang, Dong-Won;Lee, Young-Hwan;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.37-45
    • /
    • 2009
  • Today, Internet service is a most important Information Source. So, the Power Line Communication has been achieved to offer Internet service to Last-Mile area. But, Power Line is not suitable for communication, So, electromagnetic wave is generated from Power Line during flow of communication information. And the electromagnetic wave is interfered with Wireless Communication Service using the same frequency range. In this paper, the Notch Filter and the Spectrum Sensing technology are proposed to reduction of interference between Power Line Communication and Wireless Communication Service. The Spectrum Sensing technology is the core technology of the Cognitive Radio (CR) system. CR is the technology that temporarily allocates the frequency bandwidth by scanning surrounding wireless environments to keep licensed terminals and search the unused frequency bandwidth. The proposed emulator is implemented with Spectrum Sensing and Notch Filter system using Embedded Board.

Interference Avoidance Technology in Cognitive Based MB-OFDM UWB System (인지 기반 MB-OFDM UWB 시스템에서의 간섭 회피 기술)

  • Sung, Tae-Kyung;Weon, Young-Su;Cho, Hyung-Rae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.677-687
    • /
    • 2008
  • CR technology is an intelligent technology which can sense the spectrum environment an adaptively adjust the parameters for wireless transmission. In this paper, by using CR-UWB, the spectrum efficiency of the transmission channel is largely improved; Furthermore, the interference to other system can be effectively avoided. In this paper, we propose a solution on interference problem of UWB system using cognitive radio. We use interference temperature model of cognitive radio that has proposed by FCC for estimating interference signal. Calculating channel capacity of UWB system with interference temperature, we suggest how to solve interference problem. We have used genetic algorithm in cognitive engine's calculation precess. The proposed UWB System with cognitive radio shows very efficient in solving interference problem.

Applying Artificial Intelligence Based on Fuzzy Logic for Improved Cognitive Wireless Data Transmission: Models and Techniques

  • Ahmad AbdulQadir AlRababah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.13-26
    • /
    • 2023
  • Recently, the development of wireless network technologies has been advancing in several directions: increasing data transmission speed, enhancing user mobility, expanding the range of services offered, improving the utilization of the radio frequency spectrum, and enhancing the intelligence of network and subscriber equipment. In this research, a series of contradictions has emerged in the field of wireless network technologies, with the most acute being the contradiction between the growing demand for wireless communication services (on operational frequencies) and natural limitations of frequency resources, in addition to the contradiction between the expansions of the spectrum of services offered by wireless networks, increased quality requirements, and the use of traditional (outdated) management technologies. One effective method for resolving these contradictions is the application of artificial intelligence elements in wireless telecommunication systems. Thus, the development of technologies for building intelligent (cognitive) radio and cognitive wireless networks is a technological imperative of our time. The functions of artificial intelligence in prospective wireless systems and networks can be implemented in various ways. One of the modern approaches to implementing artificial intelligence functions in cognitive wireless network systems is the application of fuzzy logic and fuzzy processors. In this regard, the work focused on exploring the application of fuzzy logic in prospective cognitive wireless systems is considered relevant.

Throughput Maximization for Cognitive Radio Users with Energy Constraints in an Underlay Paradigm

  • Vu, Van-Hiep;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.79-84
    • /
    • 2017
  • In a cognitive radio network (CRN), cognitive radio users (CUs) should be powered by a small battery for their operations. The operations of the CU often include spectrum sensing and data transmission. The spectrum sensing process may help the CU avoid a collision with the primary user (PU) and may save the energy that is wasted in transmitting data when the PU is present. However, in a time-slotted manner, the sensing process consumes energy and reduces the time for transmitting data, which degrades the achieved throughput of the CRN. Subsequently, the sensing process does not always offer an advantage in regards to throughput to the CRN. In this paper, we propose a scheme to find an optimal policy (i.e., perform spectrum sensing before transmitting data or transmit data without the sensing process) for maximizing the achieved throughput of the CRN. In the proposed scheme, the data collection period is considered as the main factor effecting on the optimal policy. Simulation results show the advantages of the optimal policy.

Fast Spectrum Sensing in Radar-Interfered Airborne Cognitive Radio Systems (레이다 신호의 간섭 환경에서 항공 인지무선 시스템의 빠른 스펙트럼 센싱)

  • Kim, Soon-Seob;Choi, Young-June
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.655-662
    • /
    • 2012
  • In this work, we propose an airborne cognitive radio system that searches a new spectrum band to avoid a communication interruption due to the interference from many radar signals. We develop a method of fast spectrum sensing based on an effective frequency by recognizing the interfering radar as well as geographical information. This effective frequency is calculated by the free-space path loss between a base station and a fighter with the speed parameter. From our analysis, it is verified that the maximum frequency searching time is reduced by half by using our method.