• Title/Summary/Keyword: Cognitive Systems Engineering

Search Result 387, Processing Time 0.022 seconds

Study on the influence of Alpha wave music on working memory based on EEG

  • Xu, Xin;Sun, Jiawen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.467-479
    • /
    • 2022
  • Working memory (WM), which plays a vital role in daily activities, is a memory system that temporarily stores and processes information when people are engaged in complex cognitive activities. The influence of music on WM has been widely studied. In this work, we conducted a series of n-back memory experiments with different task difficulties and multiple trials on 14 subjects under the condition of no music and Alpha wave leading music. The analysis of behavioral data show that the change of music condition has significant effect on the accuracy and time of memory reaction (p<0.01), both of which are improved after the stimulation of Alpha wave music. Behavioral results also suggest that short-term training has no significant impact on working memory. In the further analysis of electrophysiology (EEG) data recorded in the experiment, auto-regressive (AR) model is employed to extract features, after which an average classification accuracy of 82.9% is achieved with support vector machine (SVM) classifier in distinguishing between before and after WM enhancement. The above findings indicate that Alpha wave leading music can improve WM, and the combination of AR model and SVM classifier is effective in detecting the brain activity changes resulting from music stimulation.

Emotional User Experience in Web-Based Geographic Information System: An Indonesian UX Analysis

  • Lokman, Anitawati Mohd;Isa, Indra Griha Tofik;Novianti, Leni;Ariyanti, Indri;Sadariawati, Rika;Aziz, Azhar Abd;Ismail Afiza
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.271-279
    • /
    • 2022
  • In the discipline of design science, the integration of cognitive, semantic, and affective elements is crucial in the conception and development of a product. Affective components in IT artefacts have attracted researchers' attention, but little attention has been given to Geographic Information Systems (GIS). This research was conducted to identify emotions in web-based GIS, and determine design influences on the emotions using Kansei engineering (KE). In the evaluation procedure, ten web-based GIS were used as specimens, and 20 Kansei words were used as emotional descriptors in the Kansei checklist. 50 participants were asked to rate their emotional responses towards the specimens on the Kansei checklist. Principal Component Analysis was used to discover the semantic structure of Kansei, in which dynamism and spaciousness were identified. Significant Kansei concepts were identified using Factor Analysis, in which dynamic & well-organized, refreshing, spacious, professional, and nautical-look were identified. Partial Least Square analysis has assisted the research in discovering the significant design influence to the Kansei. These findings provide designers and other stakeholders with valuable knowledge for strategizing future web-based GIS designs that incorporate user emotions.

Inter-space Interaction Issues Impacting Middleware Architecture of Ubiquitous Pervasive Computing

  • Lim, Shin-Young;Helal, Sumi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.42-51
    • /
    • 2008
  • We believe that smart spaces, offering pervasive services, will proliferate. However, at present, those islands of smart spaces should be joined seamlessly with each other. As users move about, they will have to roam from one autonomous smart space to another. When they move into the new island of smart space, they should setup their devices and service manually or not have access to the services available in their home spaces. Sometimes, there will conflicts between users when they try to occupy the same space or use a specific device at the same time. It will also be critical to elder people who suffer from Alzheimer or other cognitive impairments when they travel from their smart space to other visited spaces (e.g., grocery stores, museums). Furthermore our experience in building the Gator Tech Smart House reveals to us that home residents generally do not want to lose or be denied all the features or services they have come to expect simply because they move to a new smart space. The seamless inter-space interaction requirements and issues are raised automatically when the ubiquitous pervasive computing system tries to establish the user's service environment by allocating relevant resources after the user moves to a new location where there are no prior settings for the new environment. In this paper, we raise and present several critical inter-space interactions issues impacting middleware architecture design of ubiquitous pervasive computing. We propose requirements for resolving these issues on seamless inter-space operation. We also illustrate our approach and ideas via a service scenario moving around two smart spaces.

Analysis of Error Propagation in Two-way-ranging-based Cooperative Positioning System (TWR 기반 군집 협업측위 시스템의 오차 전파 분석)

  • Lim, Jeong-Min;Lee, Chang-Eun;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.898-902
    • /
    • 2015
  • Alternative radio-navigation technologies aim at providing continuous navigation solution even if one cannot use GNSS (Global Navigation Satellite System). In shadowing region such as indoor environment, GNSS signal is no longer available and the alternative navigation system should be used together with GNSS to provide seamless positioning. For soldiers in battlefield where GNSS signal is jammed or in street battle, the alternative navigation system should work without positioning infrastructure. Moreover, the radio-navigation system should have scalability as well as high accuracy performance. This paper presents a TWR (Two-Way-Ranging)-based cooperative positioning system (CPS) that does not require location infrastructure. It is assumed that some members of CPS can obtain GNSS-based position and they are called mobile anchors. Other members unable to receive GNSS signal compute their position using TWR measurements with mobile anchors and neighboring members. Error propagation in CPS is analytically studied in this paper. Error budget for TWR measurements is modeled first. Next, location error propagation in CPS is derived in terms of range errors. To represent the location error propagation in the CPS, Location Error Propagation Indicator (LEPI) is proposed in this paper. Simulation results show that location error of tags in CPS is mainly influenced by the number of hops from anchors to the tag to be positioned as well as the network geometry of CPS.

A Study on Indoor Route Guidance at Railway Stations for the Transportation Vulnerable (교통약자의 철도역 실내 길안내 방안에 관한 연구)

  • Jae-Bum Shin;Seong-Cheol Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.167-178
    • /
    • 2023
  • Our society is rapidly changing, and there is a growing demand for various convenience services in our daily lives. Among these services, railway and subway stations require tailored wayfinding services to accommodate individuals with disabilities. Currently, signage and information desks are the primary means of navigation. However, individuals with disabilities often rely on assistance from others due to physical discomfort or cognitive impairments. In this paper, we propose a customized wayfinding system within railway stations to assist individuals with disabilities. This system aims to ensure safe and convenient mobility in complex indoor environments, including transfer facilities.

Social Impacts of IoT: Job Prospects through Scenario Planning (사물인터넷의 사회적 영향: 시나리오 플래닝을 통한 일자리 영향 전망)

  • Soyoung Yoo;Ingoo Han
    • Information Systems Review
    • /
    • v.18 no.4
    • /
    • pp.173-187
    • /
    • 2016
  • This study on the social effects of Internet of Things (IoTs) provides an overview of future job prospects through the scenario planning approach, highlighting the challenges and opportunities that IoTs will bring in the future. IoTs and the related field of technological innovations have become increasingly important in both academic and business communities in the past few years because of computing power breakthrough and its price drop. IoTs enables people to deal with routine works efficiently and challenges them even in non-routine and/or cognitive tasks, which are considered a unique area for individuals. The scenario planning analysis helps us to define the uncertain boundary and to estimate the potential opportunities and inherent threats to provide decision makers with a mind map on how the development of IoTs can influence employment. To assess the potential effects on jobs described in our scenarios, we briefly examine the local structure of employment and discuss which careers are expected to decline or grow in particular among the 52 standard occupational classifications in Korea.

Identification and Organization of Task Complexity Factors Based on a Model Combining Task Design Aspects and Complexity Dimensions

  • Ham, Dong-Han
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • Objective: The purpose of this paper is to introduce a task complexity model combining task design aspects and complexity dimensions and to explain an approach to identifying and organizing task complexity factors based on the model. Background: Task complexity is a critical concept in describing and predicting human performance in complex systems such as nuclear power plants(NPPs). In order to understand the nature of task complexity, task complexity factors need to be identified and organized in a systematic manner. Although several methods have been suggested for identifying and organizing task complexity factors, it is rare to find an analytical approach based on a theoretically sound model. Method: This study regarded a task as a system to be designed. Three levels of design ion, which are functional, behavioral, and structural level of a task, characterize the design aspects of a task. The behavioral aspect is further classified into five cognitive processing activity types(information collection, information analysis, decision and action selection, action implementation, and action feedback). The complexity dimensions describe a task complexity from different perspectives that are size, variety, and order/organization. Combining the design aspects and complexity dimensions of a task, we developed a model from which meaningful task complexity factors can be identified and organized in an analytic way. Results: A model consisting of two facets, each of which is respectively concerned with design aspects and complexity dimensions, were proposed. Additionally, twenty-one task complexity factors were identified and organized based on the model. Conclusion: The model and approach introduced in this paper can be effectively used for examining human performance and human-system interface design issues in NPPs. Application: The model and approach introduced in this paper could be used for several human factors problems, including task allocation and design of information aiding, in NPPs and extended to other types of complex systems such as air traffic control systems as well.

A Study on Estimation of Carotid Intima-Media Thickness(IMT) using Pulse Wave Velocity(PWV) (맥파전달속도를 이용한 내중막 두께 추정에 관한 연구)

  • Song, Sang-Ha;Jang, Seung-Jin;Kim, Wuon-Shik;Lee, Hyun-Sook;Yoon, Young-Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.401-411
    • /
    • 2009
  • In this paper, we correct pulse wave velocity(PWV) with heart-rate and derive regression equations to estimate intima-media thickness(IMT). Widely used methods for diagnosis of arteriosclerosis are IMT and PWV. Arterial wall stiffness determines the degree of energy absorbed by the elastic aorta and its recoil in diastole but there is not correlation between sclerosis and IMT in an existing study. In this study, we will correct PWV with heart-rate and get regression equation to estimate IMT using heart-rate correction index(HCI). We executed experiments for this study. Made up question of physical condition and measured electrocardiogram(ECG), photoplethysmogram (PPG) of finger-tip and toe-tip and ultrasound image of carotid artery. Calculated PWV and IMT using ECG, PPG and ultrasound image. We found that every p-value between PWV and IMT is not significant(<0.05). But p-value between IMT and HCI which is a corrected PWV using heart-rate is significant(>0.01). We use HCI and various measured parameter for estimating regression equation and apply backward estimation to select parameters for regression analysis. Result of backward estimation, found that only HCI is possible to derive proper regression equation of IMT. Relationship between PWV and IMT is the second order. Result of regression equation of E-H PWV is $R^2$=0.735, adj $R^2$=0.711. This is the best correlation value. We calculate error of its analysis for verification of earlobe PWV regression equation. Its result is RMSEP=0.0328, MAPE(%) = 4.7622. Like this regression analysis, we know that HCI is useful parameter and relationship between PWV, HCI and IMT. In addition, we are able to suggest possibility which is that we can get different parameter of prediction throughout just one measurement.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

Classification of Mental States Based on Spatiospectral Patterns of Brain Electrical Activity

  • Hwang, Han-Jeong;Lim, Jeong-Hwan;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.15-24
    • /
    • 2012
  • Classification of human thought is an emerging research field that may allow us to understand human brain functions and further develop advanced brain-computer interface (BCI) systems. In the present study, we introduce a new approach to classify various mental states from noninvasive electrophysiological recordings of human brain activity. We utilized the full spatial and spectral information contained in the electroencephalography (EEG) signals recorded while a subject is performing a specific mental task. For this, the EEG data were converted into a 2D spatiospectral pattern map, of which each element was filled with 1, 0, and -1 reflecting the degrees of event-related synchronization (ERS) and event-related desynchronization (ERD). We evaluated the similarity between a current (input) 2D pattern map and the template pattern maps (database), by taking the inner-product of pattern matrices. Then, the current 2D pattern map was assigned to a class that demonstrated the highest similarity value. For the verification of our approach, eight participants took part in the present study; their EEG data were recorded while they performed four different cognitive imagery tasks. Consistent ERS/ERD patterns were observed more frequently between trials in the same class than those in different classes, indicating that these spatiospectral pattern maps could be used to classify different mental states. The classification accuracy was evaluated for each participant from both the proposed approach and a conventional mental state classification method based on the inter-hemispheric spectral power asymmetry, using the leave-one-out cross-validation (LOOCV). An average accuracy of 68.13% (${\pm}9.64%$) was attained for the proposed method; whereas an average accuracy of 57% (${\pm}5.68%$) was attained for the conventional method (significance was assessed by the one-tail paired $t$-test, $p$ < 0.01), showing that the proposed simple classification approach might be one of the promising methods in discriminating various mental states.