• 제목/요약/키워드: Cognitive Engineering

검색결과 1,316건 처리시간 0.03초

Comparative Evaluation of Three Cognitive Error Analysis Methods Through an Application to Accident Management Tasks in NPPs

  • Wondea Jung;Kim, Jaewhan;Jaejoo Ha;Wan C. Yoon
    • Nuclear Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.8-22
    • /
    • 1999
  • This study was performed to comparatively evaluate selected Human Reliability Analysis (HRA) methods which mainly focus on cognitive error analysis, and to derive the requirement of a new human error analysis (HEA) framework for Accident Management (AM) in Nuclear Power Plants (NPPs). In order to achieve this goal, we carried out a case study of human error analysis on an AM task in NPPs. In the study we evaluated three cognitive HEA methods, HRMS, CREAM and PHECA, which were selected through the review of the currently available seven cognitive HEA methods. The task of reactor cavity flooding was chosen for the application study as one of typical tasks of AM in NPPs. From the study, we derived seven requirement items for a new HEA method of AM in NPPs. We could also evaluate the applicability of three cognitive HEA methods to AM tasks. CREAM is considered to be more appropriate than others for the analysis of AM tasks, HRMS is also applicable to the error analysis of AM tasks. But, PHECA is regarded less appropriate for the predictive HEA technique as well as for the analysis of AM tasks. In addition to these, the advantages and disadvantagesofeachmethodaredescribed.

  • PDF

Neuro-cognitive Ramifications of Fasting and Feeding in Obese and Non-obese Cases

  • Mostafavi, Seyed-Ali;Khaleghi, Ali;Vand, Safa Rafiei;Alavi, Seyyed Salman;Mohammadi, Mohammad Reza
    • Clinical Psychopharmacology and Neuroscience
    • /
    • 제16권4호
    • /
    • pp.481-488
    • /
    • 2018
  • Preliminary studies have claimed that short term fasting would negatively affect school performance and cognition. In contrast some other studies have reported not important decline in cognition and executive function as a result of fasting. Also limited attention was generally devoted to dietetic regimens, nutritional status and body weight. Yet neuroscience and neuro-cognitive aspects of acute hunger on the electroencephalogram and differences between obese and non-obese cases is not well understood. Hence, we decided to design and perform a case study in a more controlled situation similar to reality. Therefore, we performed several examinations including subjective tests (for eating status) and objective tests (cognitive tests such as Stroop effect and Sternberg search and electroencephalogram measures such as steady-state visual evoked potential and auditory steady-state responses) for an obese and a non-obese academic case before and after a simple breakfast. The results showed that the breakfast effects on the neuro-cognitive functions depend on either obesity status, nutritional status of the case or the type of cognitive task (visual or auditory). This paper would open a new insight to answer some important questions about the neuro-cognitive implications of fasting and feeding in obese and non-obese human cases.

사용자 상호작용에 의한 퍼지 인식도 구축 지원 시스템 (Fuzzy Cognitive Map Construction Support System based on User Interaction)

  • 신형욱;정종문;챠위핑;양형정;김경윤
    • 한국콘텐츠학회논문지
    • /
    • 제8권12호
    • /
    • pp.1-9
    • /
    • 2008
  • 인과관계의 지식을 모델링하고 표현하며 추론하는 주요 형식화 방법의 하나인 퍼지인식도(Fuzzy Cognitive Map)는 주로 인과지식공학에 많이 사용되고 있다. 인과관계의 자연스럽고 쉬운 의사결정의 이해와 전후관계의 자연스러운 설명이라는 장점에도 불구하고 인과관계의 지식 모델링과 표현은 구현에 있어서 수학적인 적용의 모호함과 복잡한 알고리즘으로 인해 상호작용에 기반 한 구축 시스템을 찾아보기 어렵다. 본 논문에서는 인과지식 추론을 위한 퍼지 인식도의 구축 지원 시스템을 제시한다. 본 논문에서 제안하는 인과관계 추론 시스템은 다중 전문가의 지식을 반영하기 위해 지식을 점진적으로 반영하여 퍼지 인식도를 구축한다. 또한 전문가와의 상호작용을 통해 구현된 퍼지 인식도의 구조를 동적으로 디스플레이함으로써 사용자 지향적인 환경을 제공한다.

Connectivity Analysis of Cognitive Radio Ad-hoc Networks with Shadow Fading

  • Dung, Le The;An, Beongku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3335-3356
    • /
    • 2015
  • In this paper, we analyze the connectivity of cognitive radio ad-hoc networks in a log-normal shadow fading environment. Considering secondary user and primary user's locations and primary user's active state are randomly distributed according to a homogeneous Poisson process and taking into account the spectrum sensing efficiency of secondary user, we derive mathematical models to investigate the connectivity of cognitive radio ad-hoc networks in three aspects and compare with the connectivity of ad-hoc networks. First, from the viewpoint of a secondary user, we study the communication probability of that secondary user. Second, we examine the possibility that two secondary users can establish a direct communication link between them. Finally, we extend to the case of finding the probability that two arbitrary secondary users can communicate via multi-hop path. We verify the correctness of our analytical approach by comparing with simulations. The numerical results show that in cognitive radio ad-hoc networks, high fading variance helps to remarkably improve connectivity behavior in the same condition of secondary user's density and primary user's average active rate. Furthermore, the impact of shadowing on wireless connection probability dominates that of primary user's average active rate. Finally, the spectrum sensing efficiency of secondary user significantly impacts the connectivity features. The analysis in this paper provides an efficient way for system designers to characterize and optimize the connectivity of cognitive radio ad-hoc networks in practical wireless environment.

사례기반 추론 기법을 이용한 인지 라디오 주파수 선택 방법 연구 (Study on Frequency Selection Method Using Case-Based Reasoning for Cognitive Radio)

  • 박재훈;최증원;음수빈;이원철
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.58-71
    • /
    • 2019
  • 본 논문은 군 전술 무선 통신망에서의 가용 주파수 채널 확보를 위한 인지 라디오 엔진 플랫폼 구조 및 인지 라디오 무선기기를 위한 가용 주파수 채널 추론기법을 제안하였다. 현재의 군 전술 통신망은 동종 및 이종 군 무선기기 주파수의 효과적 운용을 위한 가용 주파수 확보 및 군 무선기기 간의 상호공존 방안에 대한 필요성이 빠르게 증가하고 있는 실정이다. 본 논문은 최적의 가용 주파수 채널확보 방안으로 동적 스펙트럼 접속(DSA, Dynamic Spectrum Access) 실현을 위한 인지 라디오 엔진 기술 기반의 가용채널 추론기법에 대해 소개하였다. 이를 위해 주사용자(PU, Primary User)의 채널 이용현황 모델링 및 채널 점유확률 계산을 통하여 인지 라디오 무선기기를 위한 사례 기반의 가용채널 추론기법을 제안하였으며, 성능분석 모의실험을 통하여 주사용자의 점유채널 정보 대비 인지 라디오 무전기의 가용채널 획득 정보 간의 충돌확률 변화율을 분석하였다.

Spatial Correlation-based Resource Sharing in Cognitive Radio SWIPT Networks

  • Rong, Mei;Liang, Zhonghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.3172-3193
    • /
    • 2022
  • Cognitive radio-simultaneous wireless information and power transfer (CR-SWIPT) has attracted much interest since it can improve both the spectrum and energy efficiency of wireless networks. This paper focuses on the resource sharing between a point-to-point primary system (PRS) and a multiuser multi-antenna cellular cognitive radio system (CRS) containing a large number of cognitive users (CUs). The resource sharing optimization problem is formulated by jointly scheduling CUs and adjusting the transmit power at the cognitive base station (CBS). The effect of accessing CUs' spatial channel correlation on the possible transmit power of the CBS is investigated. Accordingly, we provide a low-complexity suboptimal approach termed the semi-correlated semi-orthogonal user selection (SC-SOUS) algorithm to enhance the spectrum efficiency. In the proposed algorithm, CUs that are highly correlated to the information decoding primary receiver (IPR) and mutually near orthogonal are selected for simultaneous transmission to reduce the interference to the IPR and increase the sum rate of the CRS. We further develop a spatial correlation-based resource sharing (SC-RS) strategy to improve energy sharing performance. CUs nearly orthogonal to the energy harvesting primary receiver (EPR) are chosen as candidates for user selection. Therefore, the EPR can harvest more energy from the CBS so that the energy utilization of the network can improve. Besides, zero-forcing precoding and power control are adopted to eliminate interference within the CRS and meet the transmit power constraints. Simulation results and analysis show that, compared with the existing CU selection methods, the proposed low-complex strategy can enhance both the achievable sum rate of the CRS and the energy sharing capability of the network.

Implementation of Spectrum-Sensing for Cognitive Radio Using USRP with GNU Radio and a Cloud Server

  • Thien, Huynh Thanh;Tendeng, Rene;Vu-Van, Hiep;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • 제16권1호
    • /
    • pp.23-30
    • /
    • 2018
  • In cognitive radio (CR), spectrum sensing is an essential function since secondary users (SUs) must determine whether the primary user (PU) is utilizing the channel or not, and furthermore, SUs opportunistically access the licensed channel when the PU is absent. In this paper, spectrum sensing is implemented by energy detection, and a software-defined radio testbed is built to evaluate sensing performance by energy detection in a real environment. In particular, the testbed was built based on the GNU's Not Unix (GNU) Radio software platform and Universal Software Radio Peripheral National Instruments 2900 devices. More specifically, a new block of energy detection is developed by using an out-of-tree module from GNU Radio. To successfully integrate CR into the cloud computing paradigm, we also implement cloud computing-based spectrum sensing by utilizing a cloud server with ThingSpeak, such that we can store, process, and share the sensing information more efficiently in a centralized way in the cloud server.

Fast Spectrum Sensing with Coordinate System in Cognitive Radio Networks

  • Lee, Wilaiporn;Srisomboon, Kanabadee;Prayote, Akara
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.491-501
    • /
    • 2015
  • Spectrum sensing is an elementary function in cognitive radio designed to monitor the existence of a primary user (PU). To achieve a high rate of detection, most techniques rely on knowledge of prior spectrum patterns, with a trade-off between high computational complexity and long sensing time. On the other hand, blind techniques ignore pattern matching processes to reduce processing time, but their accuracy degrades greatly at low signal-to-noise ratios. To achieve both a high rate of detection and short sensing time, we propose fast spectrum sensing with coordinate system (FSC) - a novel technique that decomposes a spectrum with high complexity into a new coordinate system of salient features and that uses these features in its PU detection process. Not only is the space of a buffer that is used to store information about a PU reduced, but also the sensing process is fast. The performance of FSC is evaluated according to its accuracy and sensing time against six other well-known conventional techniques through a wireless microphone signal based on the IEEE 802.22 standard. FSC gives the best performance overall.

Outage Analysis of OFDM-Based Cognitive AF Relay Network in the Presence of Narrowband Interference

  • Rajkumar, Samikkannu;Senthilkumaran, V.N.;Thiruvengadam, S.J.
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.460-470
    • /
    • 2015
  • Orthogonal frequency-division multiplexing (OFDM) is one of the most widely used technologies in current wireless communication systems and standards. Cognitive radio (CR) provides a robust solution to the problem of spectrum congestion as it offers opportunistic usage of frequency bands that are not occupied by primary users. Due to the underlying sensing, spectrum shaping, scaling, and interoperable capabilities of OFDM, it has been adapted as a best transmission technology for CR wireless systems. However, the performance of an OFDM-based CR wireless system is affected by the existence of narrowband interference (NBI) from other users. Further, due to carrier frequency offset in NBI sources, NBI energy may spread over all subcarriers of an OFDM signal. In this paper, a fixed Amplify-and-Forward (AF) relay that operates at a frequency band that is different from that of direct mode is introduced to suppress the effect of NBI. Analytical expressions are derived for outage probability in direct, AF-relay, and incremental relaying modes. The outage performance of the proposed AF relay-based CR network is proven to be better than that of direct mode.

Differential Game Theoretic Approach for Distributed Dynamic Cooperative Power Control in Cognitive Radio Ad Hoc Networks

  • Zhang, Long;Huang, Wei;Wu, Qiwu;Cao, Wenjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.3810-3830
    • /
    • 2015
  • In this paper, we investigate the differential game theoretic approach for distributed dynamic cooperative power control in cognitive radio ad hoc networks (CRANETs). First, a payoff function is defined by taking into consideration the tradeoff between the stock of accumulated power interference to the primary networks and the dynamic regulation of the transmit power of secondary users (SUs). Specifically, the payoff function not only reflects the tradeoff between the requirement for quickly finding the stable available spectrum opportunities and the need for better channel conditions, but also reveals the impact of the differentiated types of data traffic on the demand of transmission quality. Then the dynamic power control problem is modeled as a differential game model. Moreover, we convert the differential game model into a dynamic programming problem to obtain a set of optimal strategies of SUs under the condition of the grand coalition. A distributed dynamic cooperative power control algorithm is developed to dynamically adjust the transmit power of SUs under grand coalition. Finally, numerical results are presented to demonstrate the effectiveness of the proposed algorithm for efficient power control in CRANETs.