• Title/Summary/Keyword: Cognitive Computing

Search Result 140, Processing Time 0.026 seconds

A User Driven Adaptive Bandwidth Video Streaming System (사용자 기반 가변 대역폭 영상 스트리밍 시스템)

  • Chung, Yeongjee;Ozturk, Yusuf
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.825-840
    • /
    • 2015
  • Adaptive bitrate (ABR) streaming technology has become an important and prevalent feature in many multimedia delivery systems, with content providers such as Netflix and Amazon using ABR streaming to increase bandwidth efficiency and provide the maximum user experience when channel conditions are not ideal. Where such systems could see improvement is in the delivery of live video with a closed loop cognitive control of video encoding. In this paper, we present streaming camera system which provides spatially and temporally adaptive video streams, learning the user's preferences in order to make intelligent scaling decisions. The system employs a hardware based H.264/AVC encoder for video compression. The encoding parameters can be configured by the user or by the cognitive system on behalf of the user when the bandwidth changes. A cognitive video client developed in this study learns the user's preferences(i.e. video size over frame rate) over time and intelligently adapts encoding parameters when the channel conditions change. It has been demonstrated that the cognitive decision system developed has the ability to control video bandwidth by altering the spatial and temporal resolution, as well as the ability to make scaling decisions.

Elementary School Students Who Give Up on Learning Mathematics: Correlations with Non-cognitive Learner Characteristics (초등학생의 수학학습 포기 인식과 정의적 요인 연관성 분석)

  • Ko, Ho Kyoung;Kim, Hyung Won;Kaji, Shizuo;Choi, Suyoung
    • Education of Primary School Mathematics
    • /
    • v.20 no.2
    • /
    • pp.143-151
    • /
    • 2017
  • An increasing number of students are giving up on learning mathematics at all grade levels, including elementary school. The study in this paper considers seven non-cognitive student characteristics to identify which are strongly correlated with giving up on mathematics at the elementary school level. Data were collected with a survey on the non-cognitive domain of mathematics learning that was developed by the Korea Foundation for the Advancement of Science and Creativity in 2015. The data were collected from 3,636 elementary school students in Korea, and we analyzed the data using the statistical computing program R. Of the seven components, efficacy and interest have a strong correlation with students' tendency to profess that they have given up trying to learn mathematics. The findings of the study shed light on which non-cognitive domain areas mathematics teachers need to pay more attention to in order to make their teaching effective. This study further investigated the correlation between responses to each of the 24 survey items and students' claim that they have given up on mathematics. Using the 8 items with the highest correlations, we have developed a shorter, 8-item version of the survey, which will be useful for similar future studies.

Studies of the Efficiency of Wearable Input Interface (웨어러블 입력장치의 인터페이스 효율성에 관한 연구)

  • Lee, Seun-Young;Hong, Ji-Young;Chae, Haeng-Suk;Han, Kwang-Hee
    • Science of Emotion and Sensibility
    • /
    • v.10 no.4
    • /
    • pp.583-601
    • /
    • 2007
  • The desktop interface is not suitable for the environment in which mobile devices are used commonly with moving, because much attention should be paid for it. And the miniaturizing of mobile devices increases the workload for using them, makes the operation speeds lower and makes more errors. So the study of appropriate level of the input interface for this changing environment is needed. In the aspect of mobile devices. input style and the complexity of the menu hierarchy, this study will look for the way to decrease the workload when doing some primary tasks and using mobile devices simultaneously with moving. The input style was classified into gesture input style, button input style, and pointing input style. The accuracy and speed were measured when doing dual tasks, including a menu searching task and a figure memory task, through one input style of three. By Changing the level of menu hierarchy in the menu searching task, the accuracy of task execution was examined. These Experiments were done in standing state and moving state. In both state the pointing input style was the highest in the accuracy of task execution but the slowest in the speed. In contrast, the gesture input style was not high in the accuracy but the fastest in the speed. This fact shows that the gesture input style is suitable for the condition needed for speedy processing rather than accurate execution when moving.

  • PDF

Artificial Neural Network with Firefly Algorithm-Based Collaborative Spectrum Sensing in Cognitive Radio Networks

  • Velmurugan., S;P. Ezhumalai;E.A. Mary Anita
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1951-1975
    • /
    • 2023
  • Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.

Guided Instruction of Introducing Computational Thinking to Non-Computer Science Education Major Pre-Service Teachers

  • Song, Ki-Sang
    • International journal of advanced smart convergence
    • /
    • v.6 no.2
    • /
    • pp.24-33
    • /
    • 2017
  • Since 'teaching coding' or 'programming' classes for computational thinking (CT) education in K-12 are renowned around the world, a pre-service teachers' readiness for integrating CT into their teaching subjects is important due to the fact that CT is considered to be another 'R' from algoRitm for 21st century literacy, in addition to the traditional 3R (Reading, Writhing, and Arithmetic) [2] and CT roles to other disciplines. With this rationale, we designed a guided instruction based CT course for pre-service teachers. We show the effectiveness of the program with respect to the teachers' attitude toward combining CT into their teaching subjects, and mindset changes of learning computing connected with the career development of the teacher themselves. The research focused on the instructional methodology of teaching programing for non-Computer Science Education (CSE) majors who are not familiar with computer science for alleviating the cognitive load of first exposure to programming course under the CT concepts.

Autonomy for Smart Manufacturing (스마트 매뉴팩처링을 위한 자율화)

  • Park, Hong-Seok;Tran, Ngoc-Hien
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.287-295
    • /
    • 2014
  • Smart manufacturing (SM) considered as a new trend of modern manufacturing helps to meet objectives associated with the productivity, quality, cost and competiveness. It is characterized by decentralized, distributed, networked compositions of autonomous systems. The model of SM is inherited from the organization of the living systems in biology and nature such as ant colony, school of fish, bee's foraging behaviors, and so on. In which, the resources of the manufacturing system are considered as biological organisms, which are autonomous entities so that the manufacturing system has the advanced characteristics inspired from biology such as self-adaptation, self-diagnosis, and self-healing. To prove this concept, a cloud machining system is considered as research object in which internet of things and cloud computing are used to integrate, organize and allocate the machining resources. Artificial life tools are used for cooperation among autonomous elements in the cloud machining system.

The MPI CyberMotion Simulator: A Novel Research Platform to Investigate Human Control Behavior

  • Nieuwenhuizen, Frank M.;Bulthoff, Heinrich H.
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.122-131
    • /
    • 2013
  • The MPI CyberMotion Simulator provides a unique motion platform, as it features an anthropomorphic robot with a large workspace, combined with an actuated cabin and a linear track for lateral movement. This paper introduces the simulator as a tool for studying human perception, and compares its characteristics to conventional Stewart platforms. Furthermore, an experimental evaluation is presented in which multimodal human control behavior is studied by identifying the visual and vestibular responses of participants in a roll-lateral helicopter hover task. The results show that the simulator motion allows participants to increase tracking performance by changing their control strategy, shifting from reliance on visual error perception to reliance on simulator motion cues. The MPI CyberMotion Simulator has proven to be a state-of-the-art motion simulator for psychophysical research to study humans with various experimental paradigms, ranging from passive perception experiments to active control tasks, such as driving a car or flying a helicopter.

Efficient Multicasting Mechanism for Mobile Computing Environment (안전교육 기능성게임 제작가이드 제안_청소년대상)

  • Choi, Eun-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.302-304
    • /
    • 2018
  • There is a need for education that can be effectively education rather than one-sided audiovisual-oriented education. Serious games capable of contextual design and iterative training of various scenarios are easy to use and spread contents. The effects of safety education in childhood and adolescence, which are the most active periods of cognitive development, are most effective compared to other age group. The purpose of this study is to propose the guideline and components of the contents development for youth safety education using functional games.

  • PDF

Modeling of Classifiers by Simple Kernel Update (단순한 커널 갱신을 통한 분류기의 설계)

  • Noh Yung-Kyun;Kim Cheong-Tag;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.79-81
    • /
    • 2006
  • 커널(Kernel)을 이용한 분류 방법은 넓은 마진(large margin) 분류기로서 SVM(Support Vector Machine)을 주로 사용하게 된다 하지만, 이 방법은 라그랑제 파라미터(Lagrange Parameter)의 최적화 과정을 포함함으로써 학습 과정을 쉽지 않게 만든다. 이 최적화 과정은 특히 DNA computing과 같은 단순한 과정의 설계를 통해 결과를 얻어야 하는 새로운 계산 모델에 커널을 적용하고자 했을 경우 큰 장벽이 된다. 본 논문에서는 넓은 마진을 목표로 하는 최적화 과정이 아닌 다른 라벨(label)의 데이터간의 경계 파악을 위한 간단한 커널 갱신 방법의 도입을 통해 분류기를 설계한다. 이 방법을 가우시안 커널에 적용시켜 본 결과, 반복을 통해 데이터의 구조를 찾아갈 수 있는 특성을 보여주며, 결국 넓은 마진의 최적화된 파라미터를 찾게 됨을 보여준다. 본 논문에서는 이 최적화 방법을 DNA 분자를 이용한 커널 생성 모델인 DNA 커널에 적용시켰을 때 잘 알려진 AML/ALL 데이터를 잘 분류해 냄을 보여준다.

  • PDF

Hierarchical Mesh Segmentation Based on Global Sharp Vertices

  • Yoo, Kwan-Hee;Park, Chan;Park, Young-Jin;Ha, Jong-Sung
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.55-61
    • /
    • 2009
  • In this paper, we propose a hierarchical method for segmenting a given 3D mesh, which hierarchically clusters sharp vertices of the mesh using the metric of geodesic distance among them. Sharp vertices are extracted from the mesh by analyzing convexity that reflects global geometry. As well as speeding up the computing time, the sharp vertices of this kind avoid the problem of local optima that may occur when feature points are extracted by analyzing the convexity that reflects local geometry. For obtaining more effective results, the sharp vertices are categorized according to the priority from the viewpoint of cognitive science, and the reasonable number of clusters is automatically determined by analyzing the geometric features of the mesh.