• 제목/요약/키워드: Coenzyme complex

검색결과 15건 처리시간 0.018초

Analysis of the Growth and Metabolites of a Pyruvate Dehydrogenase Complex-Deficient Klebsiella pneumoniae Mutant in a Glycerol-Based Medium

  • Xu, Danfeng;Jia, Zongxiao;Zhang, Lijuan;Fu, Shuilin;Gong, Heng
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.753-761
    • /
    • 2020
  • To determine the role of pyruvate dehydrogenase complex (PDHC) in Klebsiella pneumoniae, the growth and metabolism of PDHC-deficient mutant in glycerol-based medium were analyzed and compared with those of other strains. Under aerobic conditions, the PDHC activity was fourfold higher than that of pyruvate formate lyase (PFL), and blocking of PDHC caused severe growth defect and pyruvate accumulation, indicating that the carbon flux through pyruvate to acetyl coenzyme A mainly depended on PDHC. Under anaerobic conditions, although the PDHC activity was only 50% of that of PFL, blocking of PDHC resulted in more growth defect than blocking of PFL. Subsequently, combined with the requirement of CO2 and intracellular redox status, it was presumed that the critical role of PDHC was to provide NADH for the anaerobic growth of K. pneumoniae. This presumption was confirmed in the PDHC-deficient mutant by further blocking one of the formate dehydrogenases, FdnGHI. Besides, based on our data, it can also be suggested that an improvement in the carbon flux in the PFL-deficient mutant could be an effective strategy to construct high-yielding 1,3-propanediol-producing K. pneumoniae strain.

Regulation of NAD+- Specific Isocitrate Dehydrogenase from Pythium ultimum

  • Kim, Hak-Ryul;Weete, John D.
    • BMB Reports
    • /
    • 제32권4호
    • /
    • pp.385-392
    • /
    • 1999
  • The $NAD^+$-specific activity of a dual coenzyme-specific isocitrate dehydrogenase (IDH; EC 1.1.1.41) from the primitive fungus Pythium ultimum was investigated to elucidate the regulatory factors that may influence the intracellular distribution of carbon and the availability of intermediates, e.g. citrate, for fatty acid synthesis. Inhibition of $NAD^+$-IDH activity by diphospho- and triphosphonucleotides (ATP, ADP, and GTP) reflected the sensitivity of this enzyme to cellular energy charge even though monophosphonucleotides (AMP and GMP) had little effect on activity. NADPH, but not NADH, substantially inhibited $NAD^+$-IDH activity, showing noncompetitive inhibition with isocitrate. Oxalacetate and ${\alpha}$-ketoglutarate showed competitive inhibition with isocitrate, while citrate and cis-aconitate showed mixed-noncompetitive inhibition with isocitrate. Inhibition by these substances ranged from 29 to 46% at 10 mM. The inhibitory effect of oxalacetate was increased synergistically by glyoxylate, which alone caused 31% uncompetitive inhibition at 10 mM, and a mixture of the two substances at 1 mM each showed 98% inhibition of $NAD^+$-IDH activity. The regulation of $NAD^+$-IDH in Pythium ultimum seems to be a complex process involving mitochondrial metabolites. The addition of glyoxylate (3 mM) and oxalacetate (3 mM) to the culture medium resulted in the production of 49% more lipid by P. ultimum.

  • PDF

Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle)

  • Lim, Dajeong;Chai, Han-Ha;Lee, Seung-Hwan;Cho, Yong-Min;Choi, Jung-Woo;Kim, Nam-Kuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권8호
    • /
    • pp.1075-1083
    • /
    • 2015
  • Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling), is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle). Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG), phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3), carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL), acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05). Analysis of the gene co-expression network based on Pearson's correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight into the biological mechanisms that determine adipose deposition within muscle.

Anti-Diabetic Effects of Dung Beetle Glycosaminoglycan on db Mice and Gene Expression Profiling

  • Ahn, Mi Young;Kim, Ban Ji;Yoon, Hyung Joo;Hwang, Jae Sam;Park, Kun-Koo
    • Toxicological Research
    • /
    • 제34권2호
    • /
    • pp.151-162
    • /
    • 2018
  • Anti-diabetes activity of Catharsius molossus (Ca, a type of dung beetle) glycosaminoglycan (G) was evaluated to reduce glucose, creatinine kinase, triglyceride and free fatty acid levels in db mice. Diabetic mice in six groups were administrated intraperitoneally: Db heterozygous (Normal), Db homozygous (CON), Heuchys sanguinea glycosaminoglycan (HEG, 5 mg/kg), dung beetle glycosaminoglycan (CaG, 5 mg/kg), bumblebee (Bombus ignitus) queen glycosaminoglycan (IQG, 5 mg/kg) and metformin (10 mg/kg), for 1 month. Biochemical analyses in the serum were evaluated to determine their anti-diabetic and anti-inflammatory actions in db mice after 1 month treatment with HEG, CaG or IQG treatments. Blood glucose level was decreased by treatment with CaG. CaG produced significant anti-diabetic actions by inhiting creatinine kinase and alkaline phosphatase levels. As diabetic parameters, serum glucose level, total cholesterol and triglyceride were significantly decreased in CaG5-treated group compared to the controls. Dung beetle glycosaminoglycan, compared to the control, could be a potential therapeutic agent with anti-diabetic activity in diabetic mice. CaG5-treated group, compared to the control, showed the up-regulation of 48 genes including mitochondrial yen coded tRNA lysine (mt-TK), cytochrome P450, family 8/2, subfamily b, polypeptide 1 (Cyp8b1), and down-regulation of 79 genes including S100 calcium binding protein A9 (S100a9) and immunoglobulin kappa chain complex (Igk), and 3-hydroxy-3-methylglutaryl-CoenzymeAsynthase1 (Hmgcs1). Moreover, mitochondrial thymidine kinase (mt-TK), was up-regulated, and calgranulin A (S100a9) were down-regulated by CaG5 treatment, indicating a potential therapeutic use for anti-diabetic agent.

식물 유래 다당류/단백질 기반 마이크로캡슐/에멀젼 제조 및 평가 (Preparation and Evaluation of Microcapsule/Emulsions via the Electroatatic Interations of Polysaccharide and Protein)

  • 최유리;임형준;이존환;오성근
    • 대한화장품학회지
    • /
    • 제41권4호
    • /
    • pp.295-302
    • /
    • 2015
  • 본 연구에서는 다당류와 단백질의 이온 결합으로 구성된 마이크로캡슐 및 에멀젼을 제조하여 다당류, 단백질의 비율에 따른 마이크로캡슐과 에멀젼의 안정도를 평가하였으며, 마이크로캡슐의 내부 오일도 종류별로 실험하였다. 에멀젼 입도를 줄여 안정도를 높여주기 위해 고압유화기를 이용하여 에멀젼을 제조하였으며 내부 담지 물질로 코엔자임 Q10 안정화를 관찰한 결과 대조군 대비 역가 하락이 없었다. 석유 유래 계면활성제가 아닌 천연 유래 원료만으로 안정한 마이크로캡슐 제조에 성공한 것이다. 광학현미경, 투과전자현미경을 이용하여 마이크로캡슐 및 에멀젼의 물리적 안정도를 관찰하고 에멀젼의 구조분석을 하였으며, 입자의 표면전위 측정을 통하여 pH 조절에 의해 제조되는 다당류/단백질 마이크로캡슐의 제조 메커니즘을 설명한다.