• Title/Summary/Keyword: Coenzyme A

Search Result 318, Processing Time 0.03 seconds

Effect of extraction conditions on radical scavenging and cholesterol metabolism regulating capacity of silkworm larvae

  • Kim, Soo Hyun;Jo, You-Young;Kweon, HaeYong;Lee, Ji Hae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.43 no.2
    • /
    • pp.45-51
    • /
    • 2021
  • High blood cholesterol levels and oxidized cholesterol are risk factors for cardiovascular disease, which displays high annual incidence. Although studies on sericulture products, including pupae, silk protein, and blood lymph, as hypocholesterolemic substances have been reported, insufficient research in this field has been focused on silkworm larvae. Six larval extracts (Low temperature distilled water, LW; hot temperature distilled water, HW; and 30-100% ethanol, E30-E100) were prepared, and their effects on cholesterol metabolism were examined. LW most potently reduced the risk of cholesterol-related disorders. Polyphenols were highly represented in LW, corresponding with its increased antioxidant potency. The cholesterol biosynthesis enzyme, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) was strongly inhibited by LW. Hepatocytes over-expressed LDL receptor (LDLR) after LW stimulation, promoting cholesterol elimination from plasma. LW also increased ATP binding cassette transporter 1 (ABCA1) gene expression, upregulating HDL biogenesis. In conclusion, LW exhibited strong antioxidant activity, suppressed cholesterol biosynthesis, improved LDL uptake from plasma, and upregulated HDL biosynthesis. In aggregate, these activities could reduce blood cholesterol levels and prevent cardiovascular disease.

In vitro Polymerization and Copolymerization of Poly-3-hydroxypropionyl-CoA with the PHB Synthase from Ralstonia eutropha

  • Song, Jae-Jun;Goodwin, Steve;Lenz, Robert W.
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.48-51
    • /
    • 2000
  • The poly(3-hydroxybutyrate) (PHB) synthase of Ralstonia. eutropha, which was produced by a recombinant strain E. coli and purified in one-step with a methyl-HIC column to a purity of more than 90%, was used to polymerize 3-hydroxypropionyl-CoA (3HPCoA) and to copolymerize 3HPCoA with 3-hydroxybutyryl-CoA (3HBCoA) in vitro. A $K_m$ of $189\;{\mu}M$ and a $k_{cat}$ of $10\;sec^{-1}$ were determined for the activity of the enzyme in the polymerization reaction of 3HPCoA based on the assumption that the dimer form of PHB synthase was the active form. Free coenzyme A was found to be a very effective competitive inhibitor for the polymerization of 3HPCoA with a $K_i$ of $85\;{\mu}M$. The maximum degree of conversion of 3HPCoA to polymer was less than 40 %. In the simultaneous copolymerization reactions of these two monomers, both the turnover number for the copolymerization reaction and the maximum degree of conversion of 3HPCoA and 3HBCoA to copolymers increased with an increase in the amount of 3HBCoA in the monomer mixture. However, the maximum conversion of 3HPCoA to a copolymer was less than 35 % regardless of the ratio of 3HPCoA to 3HBCoA. Block copolymers were obtained by the sequential copolymerization of the two monomers and these copolymers had a much narrower molecular weight distribution than those obtained by the simultaneous copolymerization of the same molar ratio of 3HPCoA and 3HBCoA.

  • PDF

Effect of Single Nucleotide Polymorphisms of Acetyl-CoA Carboxylase α(ACACA) Gene on Carcass Traits in Hanwoo (Korean Cattle)

  • Shin, Sung-Chul;Heo, Jae-Pil;Chung, Eui-Ryong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.744-751
    • /
    • 2011
  • Meat production and quality traits in beef cattle are largely affected by genetic factors. Acetyl-Coenzyme A carboxylase-${\alpha}$ (ACACA) plays a key role in the regulation and metabolism of fatty acid biosynthesis in mammalian animals. The gene encoding ACACA enzyme was chosen as a candidate gene for carcass and meat traits. In this study, we investigated effects of single nucleotide polymorphisms (SNPs) in the ACACA gene on beef carcass and meat traits in Hanwoo (Korean cattle) populations. We have sequenced a fragment of intron I region of the Hanwoo ACACA gene and identified two SNPs. Genotyping of the two SNP markers (g.2344T>C and g.2447C>A) was carried out using PCR-SSCP analysis in 309 Hanwoo steers to evaluate their association with carcass and meat production traits. The g.2344C SNP marker showed a significant increasing effect on LW (p = 0.009) and CW (p = 0.017). Animals with the CC genotype had higher CW and LW compared with TT and TC genotypes (p<0.05). The g.2447A SNP marker was associated with higher MC (p = 0.019). Animals with the AA genotype had higher MC than animals with CC and CA genotypes (p<0.05). Although the degree of linkage disequilibrium (LD) was not strong between g.2344T>C and g.2447C>A in the LD analysis, four major haplotype classes were formed with two SNP information within the ACACA gene. We constructed haplotypes using the HaploView software package program and analyzed association between haplotypes and carcass traits. The haplotype of ACACA gene significantly affected the LW (p = 0.027), CW (p = 0.041) and MC (p = 0.036). The effect of h1 haplotype on LW and CW was larger than that of h3 haplotype. Animals with the h1 haplotype also had greater MC than did animals with h2 haplotype. Consequently, the ACACA gene could be useful as a DNA marker for meat production traits such as carcass yield and meat contents in Hanwoo.

Screening of HMG-CoA Reductase Inhibitory Activity of Ethanol and Methanol Extracts from Cereals and Regumes (곡류 및 두류 추출물로 부터 HMG-CoA reductase 저해활성 검색)

  • Ha, Tae-Youl;Cho, Il-Jin;Lee, Sang-Hyo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.224-229
    • /
    • 1998
  • A study was conducted to screen the inhibitory activity of 3-hydroxy-3-methylglutaryl coenzyme A(HMG-CoA) reductase, which is known to be rate-limiting enzyme in cholesterol bosynthesis, from the extracts of 80% methanol and 70% ethanol of cereals and regumes. The strongest inhibitory activity was shown in the ethanol extract of sorghum among the ethanol extracts. The inhibitory activity of HMG-CoA reductase of prosomillilet methanol extract was 73%, and highest among the methanol extracts. The inhibitory activity of 44.7% was observed in sorghum methanol extract. The methanol extracts of prosomillet and sorghum were further fractionated with hexane, chloroform, ethylacetate, butanol and water. HMG-CoA reductase inhibitory activity was shown in all fractions of prosomillet and sorghum methanol extracts. Hexan fraction of both prosomillet and sorghum had the strongest inhibitory activity among five fractions, and the inhibitory activity was increased compared to each crude extracts.

  • PDF

Atorvastatin inhibits the proliferation of MKN45-derived gastric cancer stem cells in a mevalonate pathway-independent manner

  • Choi, Ye Seul;Cho, Hee Jeong;Jung, Hye Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.367-375
    • /
    • 2022
  • Gastric cancer stem cells (GCSCs) are a major cause of radioresistance and chemoresistance in gastric cancer (GC). Therefore, targeting GCSCs is regarded as a powerful strategy for the effective treatment of GC. Atorvastatin is a widely prescribed cholesterol-lowering drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate-limiting enzyme in the mevalonate pathway. The anticancer activity of atorvastatin, a repurposed drug, is being investigated; however, its therapeutic effect and molecular mechanism of action against GCSCs remain unknown. In this study, we evaluated the anticancer effects of atorvastatin on MKN45-derived GCSCs. Atorvastatin significantly inhibited the proliferative and tumorsphere-forming abilities of MKN45 GCSCs in a mevalonate pathway-independent manner. Atorvastatin induced cell cycle arrest at the G0/G1 phase and promoted apoptosis by activating the caspase cascade. Furthermore, atorvastatin exerted an antiproliferative effect against MKN45 GCSCs by inhibiting the expression of cancer stemness markers, such as CD133, CD44, integrin α6, aldehyde dehydrogenase 1A1, Oct4, Sox2, and Nanog, through the downregulation of β-catenin, signal transducer and activator of transcription 3, and protein kinase B activities. Additionally, the combined treatment of atorvastatin and sorafenib, a multi-kinase targeted anticancer drug, synergistically suppressed not only the proliferation and tumorsphere formation of MKN45 GCSCs but also the in vivo tumor growth in a chick chorioallantoic membrane model implanted with MKN45 GCSCs. These findings suggest that atorvastatin can therapeutically eliminate GCSCs.

The effect of fucoxanthin rich power on the lipid metabolism in rats with a high fat diet

  • Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.287-293
    • /
    • 2013
  • This study determined the effects of fucoxanthin on gene expressions related to lipid metabolism in rats with a high-fat diet. Rats were fed with normal fat diet (NF, 7% fat) group, high fat diet group (HF, 20% fat), and high fat with 0.2% fucoxanthin diet group (HF+Fxn) for 4 weeks. Body weight changes and lipid profiles in plasma, liver, and feces were determined. The mRNA expressions of transcriptional factors such as sterol regulatory element binding protein (SREBP)-1c, Carnitine palmitoyltransferase-1 (CPT1), Cholesterol $7{\alpha}$-hydroxylase1 (CYP7A1) as well as mRNA expression of several lipogenic enzymes were determined. Fucoxanthin supplements significantly increased plasma high density lipoprotein (HDL) concentration (P < 0.05). The hepatic total lipids, total cholesterols, and triglycerides were significantly decreased while the fecal excretions of total lipids, cholesterol, and triglycerides were significantly increased in HF+Fxn group (P < 0.05). The mRNA expression of hepatic Acetyl-CoA carboxylase (ACC), Fatty acid synthase (FAS), and Glucose-6-phosphate dehydrogenase (G6PDH) as well as SREBP-1C were significantly lower in HF+Fxn group compared to the HF group (P < 0.05). The hepatic mRNA expression of Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) and Acyl-CoA cholesterol acyltransferase (ACAT) were significantly low while lecithin-cholesterol acyltransferase (LCAT) was significantly high in the HF+Fxn group (P < 0.05). There was significant increase in mRNA expression of CPT1 and CYP7A1 in the HF+Fxn group, compared to the HF group (P < 0.05). In conclusion, consumption of fucoxanthin is thought to be effective in improving lipid and cholesterol metabolism in rats with a high fat diet.

Enzymes and Their Reaction Mechanisms in Dimethylsulfoniopropionate Cleavage and Biosynthesis of Dimethylsulfide by Marine Bacteria

  • Do, Hackwon;Hwang, Jisub;Lee, Sung Gu;Lee, Jun Hyuck
    • Journal of Marine Life Science
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In marine ecosystems, the biosynthesis and catabolism of dimethylsulfoniopropionate (DMSP) by marine bacteria is critical to microbial survival and the ocean food chain. Furthermore, these processes also influence sulfur recycling and climate change. Recent studies using emerging genome sequencing data and extensive bioinformatics analysis have enabled us to identify new DMSP-related genes. Currently, seven bacterial DMSP lyases (DddD, DddP, DddY, DddK, DddL, DddQ and DddW), two acrylate degrading enzymes (DddA and DddC), and four demethylases (DmdA, DmdB, DmdC, and DmdD) have been identified and characterized in diverse marine bacteria. In this review, we focus on the biochemical properties of DMSP cleavage enzymes with special attention to DddD, DddA, and DddC pathways. These three enzymes function in the production of acetyl coenzyme A (CoA) and CO2 from DMSP. DddD is a DMSP lyase that converts DMSP to 3-hydroxypropionate with the release of dimethylsulfide. 3-Hydroxypropionate is then converted to malonate semialdehyde by DddA, an alcohol dehydrogenase. Then, DddC transforms malonate semialdehyde to acetyl-CoA and CO2 gas. DddC is a putative methylmalonate semialdehyde dehydrogenase that requires nicotinamide adenine dinucleotide and CoA cofactors. Here we review recent insights into the structural characteristics of these enzymes and the molecular events of DMSP degradation.

Isolation and Cloning of Porcine SLC27A2 Gene and Detection of Its Polymorphism Associated with Growth and Carcass Traits

  • Wang, Tao;Liu, Chang;Xiong, Yuan-Zhu;Deng, Chang-Yan;Zuo, Bo;Xie, Hong-Tao;Xu, De-Quan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1169-1173
    • /
    • 2007
  • The protein encoded by SLC27A2 gene is an isozyme of long-chain fatty-acid-coenzyme A ligase family, and it converts free long-chain fatty acids into fatty acyl-CoA esters, and thereby plays a key role in lipid biosynthesis and fatty acid degradation. In the present study, SLC27A2 located on human chromosome 15 was selected as candidate gene and we isolated and cloned partial fragments of mRNA sequence and genomic fragments of porcine SLC27A2 gene. The coding region of the gene as determined by alignments shared 90% and 82% identity with human and mouse cDNAs, respectively. Detection in LargeWhite and Meishan breeds showed that a single nucleotide polymorphism (SNP) ($A{\rightarrow}G$) existed in exon 7, which caused corresponding amino acid changed for encoding. In LargeWhite pigs it encoded for Val while in Meishan pigs it encoded for Ile, so we developed the PCR-RFLP genotype method for detection of this polymorphism. Association study in 135 $F_2$ reference family indicated that significant correlation existed between the polymorphism and growth and carcass traits.

Screening of 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase Inhibitors In Vitro and Its Application to Pullets (HMG-CoA Reductase의 저해제 탐색과 가금의 콜레스테를 저하 효과)

  • Moon, Young-Ja;Yeom, Keum-Hee;Sung, Chang-Keun
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.4
    • /
    • pp.307-313
    • /
    • 2002
  • The primary objective of these studies was to screen the materials showing inhibitions of HMG-CoA reductase in vitro. The secondary objective was to determine the effect of garlic, lovastatin and copper on cholesterol concentrations in plasma, liver and breast tissues in pullets. The degree of inhibition of the selective samples on HMG-CoA reductase activity was determined in vitro. The inhibition ratios of water soluble garlic extracts, lovastatin (methanol extracts) and copper to HMG-CoA reductase activity were 51.3%, 87.5%, and 82.0%, respectively. Control diet (basal diet) and experimental diets, garlic powder (3% in diet), lovastatin (300mg/Kg of diet) and copper (200mg/Kg of diet) were fed to pullets in order to investigate the changes of cholesterol concentration in plasma and tissues. Total cholesterol, HDL- and LDL-cholesterol in blood plasma were significantly reduced in pullets fed diet containing 3% garlic powder. However, copper significantly increased total cholesterol compared to control and lovastatin did not affect plasma cholesterol concentration. Total cholesterol and triglyceride of liver and breast tissues in pullets were not affected by adding the cholesterol-lowering materials to diets. The data suggests that it is not easy for HMG-CoA reductase inhibitors to reduce cholesterol levels in body due to complication of cholesterol metabolism. However, garlic administration can lower the levels of plasma cholesterol in pullets.

Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets

  • Cha, Jae Hoon;Kim, Sun Rim;Kang, Hyun Joong;Kim, Myung Hwan;Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.10 no.5
    • /
    • pp.501-506
    • /
    • 2016
  • BACKGROUNG/OBJECTIVES: Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. MATERIALS/METHODS: Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor ${\alpha}$ were determined. RESULTS: Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CONCLUSIONS: CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.