• Title/Summary/Keyword: Coefficient of Abrasion

Search Result 75, Processing Time 0.029 seconds

Abrasion of abutment screw coated with TiN

  • Jung, Seok-Won;Son, Mee-Kyoung;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.102-106
    • /
    • 2009
  • STATEMENT OF PROBLEM. Screw loosening has been a common complication and still reported frequently. PURPOSE. The purpose of this study was to evaluate abrasion of the implant fixture and TiN coated abutment screw after repeated delivery and removal with universal measuring microscope. MATERIAL AND METHODS. Implant systems used for this study were Osstem and 3i. Seven pairs of implant fixtures, abutments and abutment screws for each system were selected and all the fixtures were perpendicularly mounted in liquid unsaturated poly-esther with dental surveyor. After 20 times of repeated closing and opening test, the evaluation for the change of inner surface of implant and TiN-coated abutment screw, and weight loss were measured. Mann-Whitney test with SPSS statistical software for Window was applied to analyze the measurement of weight loss. RESULTS. TiN-coated abutment screws of Osstem and 3i showed lesser loss of weight than non-coated those of Osstem and 3i (P < .05, Mann-Whitney test). CONCLUSION. Conclusively, TiN coating of abutment screw showed better resistance to abrasion than titanium abutment screw. It was concluded that TiN coating of abutment screw would reduce the loss of preload with good abrasion resistance and low coefficient of friction, and help to maintain screw joint stability.

The Effect of Abrasive particles on Brake Performance (자동차 제동특성에 미치는 연마제의 영향에 관한 연구)

  • Hong, Young-Suk;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.332-340
    • /
    • 2000
  • Friction properties of automotive brake pads containing different types of abrasivess were investigated. Five different abrasives, including o-quartz, magnesia, magnetite, alumina, zircon, were employed in this investigation and size effects of the abrasives on friction characteristics were also studied using 1, 50, 140$\mu\textrm{m}$ size zircon. Experimental results showed that the hardness and size of these abrasive particles were strongly related to friction behaviors and wear mechanisms. Harder and smaller abrasives showed higher friction coefficient and more wear. The surfaces of friction materials with different sizes of abrasives showed that two different modes of abrasion (two-body and three-body abrasion) appeared during sliding. Considering the above results, abrasive materials were thought to destroy transfer film and the extent of the destruction depends on the types and sizes of abrasive particles. A mechanism of the wear mode transition (two-body to three body abrasive motion) was suggested considering the binding energy and friction energy in terms of abrasive particle size.

  • PDF

Combined effect of fine aggregate and silica fume on properties of Portland cement pervious concrete

  • Zhang, Yuanbo;Zhang, Wuman;Zhang, Yingchen
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • Portland cement pervious concrete has been expected to have good water permeability, mechanical properties and abrasion resistance at the same time when Portland cement pervious concrete is applied to the actual vehicle pavement. In this study, the coarse aggregate and cement were replaced by the fine aggregate and the silica fume to improve actual road performance Portland cement pervious concrete. The Mechanical properties, the water permeability and the abrasion resistance of Portland cement pervious concrete were investigated. The results show that the compressive strength, the flexural strength and the abrasion resistance are increased when the fine aggregate and the silica fume are added to Portland cement pervious concrete separately. However, the porosity and the water permeability are decreased simultaneously. With assistance of silica fume and fine aggregate simultaneously, Portland cement pervious concrete could achieve a higher strength. The compressive strength, the flexural strength and the abrasion resistance of Portland cement pervious concrete mixed with 5% fine aggregates and 8% silica fume are increased by 93.1%, 65% and 65.2%, respectively. The porosity and the water permeability are decreased by 22.4% and 85% when Portland cement pervious concrete is mixed with 5% fine aggregate and 8% silica fume. Therefore, the replacement ratio of the fine aggregates and the silica fume should be considered comprehensively and determined on the premise of ensuring the water permeability coefficient.

Friction Characteristics of Aluminized Polyester Fabric under Dry - and Water- Lubricated Conditions

  • Byun, JaeYoung;Okechukwu, Nicholas Nnaemeka;Lee, Eunsuk;Park, JinGyu;Choi, WonSik
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.396-402
    • /
    • 2019
  • Materials made from plastics are increasingly utilized in constructing greenhouses and setting up shield structures. Polyester fabrics have a wide range of use in horticulture and other fields of agriculture. They are utilized as a greenhouse cover and also help in combating intense climate variation in the field. Over time, these fabrics may experience friction against other surfaces. Owing to this, the surface framework of the material degenerates. This study examines the frictional characteristics of aluminized polyester fabric in both dry- and water-lubricated environments under changing applied loads and sliding speeds. Friction experiments are performed at room temperature by employing a pin on a disk. The experiments reveal that the friction coefficient decreases with increase in applied load in both dry sliding and water-lubricated environment. However, the friction coefficient decreases more under the water-lubricated setting than in the dry state. At the maximum applied load, the highest friction coefficient is discovered in the dry state with a range of 0.282 to 0.237, whereas a friction coefficient of 0.229 to 0.189 is observed in the water-lubricated state. Additionally, it is observed that the friction coefficient increases with an increase in sliding speed under both experimental environments. The examination of specimen surfaces reveals that the abrasion is minor in the water-lubricated setting compared with that in the dry state.

Behavior of Reciprocating Dry Sliding Wear of Plastics Against Steel (플라스틱재료의 왕복동 마찰마멸거동)

  • 김충현;안효석;정태형
    • Tribology and Lubricants
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Friction and wear tests have been performed on nylon, acetal resin, and PTFE (polytetrafluoroethylene), in reciprocating dry sliding conditions against steel discs. According to the results, acetal resin showed the lowest wear rates and PTFE exhibited the lowest friction coefficient. The prominent wear mechanisms found were adhesion and abrasion.

A Study on Wear Characteristics of High strength aluminum alloys by Surface Hardening (표면경화에 의한 고강도 알루미늄 합금의 마모 특성에 관한 연구)

  • Lee, Nam-Soo;Huh, Sun-Chul;Lee, Kwang-Young;Park, Won-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1601-1606
    • /
    • 2007
  • In order for high strength aluminum alloys to be used in transportation systems and the aerospace industry, excellent mechanical and physical properties are required. In particular, excellent anti-abrasion property is indispensable for parts that require driving force. In general, surface treatment technologies such as high frequency heat treatment, gas solid carburizing, surface rolling, shot peening are used as ways of improving anti-abrasion property. Among various surface treatment technologies, this research chose shot peening processing for Al7075-T6, which is well known as representative high-strength alloy steel. Wear characteristics were compared and analyzed after shot peening processing with shot ball velocities of 40m/s and 70m/s in order to investigate the effects of shot peening processing on wear characteristics.

  • PDF

Effect of Ultrasonic Vibration on the Friction and Wear Characteristics of Aluminum Alloy (초음파 진동이 알루미늄 합금의 마찰 마모 특성에 미치는 영향)

  • Park, Jae-Nam;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.132-137
    • /
    • 2018
  • Ultrasonic waves are used in various applications in multiple devices, sensors, and high-power machinery, such as processing machines, welders, and cleaners, because the acoustic vibration frequencies are above the human audible frequency range. In ultrasonic machining, electrical energy at a high frequency of 20 kHz or more is converted into mechanical vibration by a vibrator and an amplifier. This technique allows instantaneous separation between a tool and a workpiece during machining, machining by pulse impulse force at the time of re-contact and minimizes the minute elastic deformations of the workpiece and machine tools due to the cutting effect. The Al7075 alloy used in this study is a typical aluminum alloy with superior strength that is mainly used in aircrafts, automobiles, and sporting goods. To investigate the optimal conditions for machining aluminum alloy using ultrasonic vibration, the present experiment utilized the Taguchi orthogonal array method, and the coefficient of friction was analyzed using the characteristics of the Taguchi technique. In ultrasonic friction and abrasion tests, the changes in the friction coefficient were measured in the absence of ultrasonic vibrations and at 28 kHz and 40 kHz. As a result, the most considerable influence on the friction coefficient was found to be the normal load, and the frequency of ultrasonic vibrations increases, the coefficient of friction increases. It was thus confirmed that the amount of wear increases when ultrasonic vibration is applied.

The Effect of the Shape of the Precured CIIR on the Physical Properties of the BR/CIIR Composites

  • Pyo, Kyeongdeok;Park, Chacheol
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.258-264
    • /
    • 2015
  • Rubber composites were prepared by precured CIIR pulverized at knead shear force in order to research the effects of the BR/PCP composites. The particle size of domain in BR/CIIR composites was decreased and homogeneously dispersed by the precured CIIR pulverized. However, it was difficult to use the product when the content is 40 phr and precured of 40%. BR/PCP composites have improved mechanical properies as compared that of the addition of simply cut chip composite.

Reciprocating sliding wear of nylon and polyacetal against steel (나일론과 폴리아세탈의 마찰마멸특성에 관한 고찰)

  • 김충현;안효석;정태형
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.203-208
    • /
    • 1999
  • Friction and wear test have been performed on nylon, polyacetal, and PTFE(polytetrafluoroethylene), in reciprocating dry sliding conditions against a steel disc. According to the results, polyacetal show lowest wear rates and PTFE was found to exhibit lowest friction coefficient. The prominent wear mechanism found were adhesion and abrasion.

  • PDF

A Study on Tribology Characteristics of Laser Patterned DLC Thin Films (Laser patterning된 DLC 박막의 Tribology 특성연구)

  • Lee, Ji Seok;Kim, Dong Jun;Shin, Dong Chul;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • In this study, the tribology of laser patterned DLC thin film was studied. DLC thin films were coated by RF-PECVD to improve the durability of tungsten carbide (WC) materials. DLC thin films have high hardness and low friction characteristics. Dot and line patterning was processed on the surface of DLC thin film with femtosecond laser, and the coefficient of friction was improved. As a result of ball on disk abrasion test, the hardness and friction coefficient of DLC thin films were much better than that of WC material. The friction coefficient of DLC thin film with dot patterning and line patterning showed better results. The excellent performance of the laser patterned DLC coating is appeared to reduce the coefficient of friction due to the reduction of surface contact area.