• 제목/요약/키워드: Coefficient of Abrasion

검색결과 75건 처리시간 0.03초

The Mechanical Properties and Abrasion Behavior of Warp Knitted Fabrics for Footwear

  • Jeon, Youn-Hee;Jeong, Won-Young;Park, Jung-Woo;An, Seung-Kook
    • Fibers and Polymers
    • /
    • 제4권4호
    • /
    • pp.151-155
    • /
    • 2003
  • The abrasion behavior of three kinds of warp knitted fabrics, which are normally used for upper sole of footwear, was evaluated. We measured the changes of mechanical and structural properties of each sample as abrasion cycle increased. Each sample showed similar trends in compression and surface properties but there were significant differences in abrasion rate among the samples. The mechanical properties showed remarkable differences with directions. The frictional coefficient (MIU) of fabric surface increased at the beginning of abrasion and decreased as abrasion cycles increased. The weight and thickness of the fabric linearly decreased with abrasion cycles. The surface roughness (SMD) and the compressional resilience (RC) decreased as abrasion cycles increased while compressional energy (WC) increased.

Effects of Silicone Mixed Fluorochemical Finishes on Fabric Performance Characteristics of a Microfiber Polyester/Cotton Blend Fabric

  • Ahn, Young-Moo;Li, Bin;Kim, Charles J.
    • 한국의류산업학회지
    • /
    • 제3권5호
    • /
    • pp.486-491
    • /
    • 2001
  • The purpose of this study was to examine the effects of chemical finishes on performance characteristics of microfiber blend fabrics. A 60% polyester microfiber/40% cotton blend woven fabric was finished by ten chemicals: three silicone softeners, one fluorochemical, and their mixtures. Performance characteristics examined were abrasion resistance, and oil/water repellency. Chemical finishes containing dimethylpolysiloxane silicone performed better in fabric abrasion resistance than other chemicals. The correlation between abrasion wear and instrumental measures of fabric hand indicated that the breaking strength loss by abrasion related negatively to the coefficient of friction. This implied that the finished fabrics with lower surface frictional coefficient (slipperier) had higher breaking strength loss by abrasion. The microfiber structure of polyester did not appear to help in oil/water repellency due to the larger surface areas of the microfibers. The fluorochemical finished fabric had the most significant improvement on oil/water repellency. The silicone-only finishes, however, did not improve oil/water repellency. When mixed with the fluorochemical, silicone finishes showed improved oil/water repellency.

  • PDF

SM45C재의 PVD코팅과 필름에 의한 트라이볼러지 특성 (Variations in Tribological Characteristics of SM45C by PVD Coating and Thin Films)

  • 심현보;서창민;김종형;서민수
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.502-510
    • /
    • 2018
  • In order to accumulate data to lower the friction coefficient of a press mold, tribological tests were performed before and after coating SM45C with a PVC/PO film and plasma coating (CrN, concept). The ultrasonic nanocrystal surface modification (UNSM)-treated material had a nano-size surface texture, high surface hardness, and large and deep compressive residual stress formation. Even when the load was doubled, the small amount of abrasion, small weight of the abrasion, and width and depth of the abrasion did not increase as much as those of untreated materials. A comparison of the weight change before and after the tribological test with the CrN and the concept coating material and that of the untreated material showed that the wear loss of the concept coating material and P-UNSM treated material (that is, the UNSM treated material treated with the concept coating) showed a tendency to decrease by approximately 55-75%. Concept 100N had a lower friction coefficient of about 0.6, and P-UNSM-30-100N showed almost the same curve as concept 100N and had a low coefficient of friction of about 0.6. The concept multilayer coating had a thickness of $5.32{\mu}m$. In the beginning, the coefficient of friction decreased because of the plasma coating, but it started to increase from about 250-300 s. After about 350 s, the coefficient of friction tended to approach the friction coefficient of the SM45C base metal. The SGV-280F film-attached test specimen was slightly pushed back and forth, but the SM45C base material was not exposed due to abrasion. The friction coefficient was 0.22, which was the lowest, and the tribological property was the best in this study.

기저귀용 부직포의 촉감에 미치는 마찰과 함수의 영향 (Effect of Abrasion and Absorption on the Handle of Nonwovens for disposable diaper)

  • 홍경화;강태진;오경화
    • 한국의류학회지
    • /
    • 제28권1호
    • /
    • pp.112-118
    • /
    • 2004
  • Recently, as the percentage of women employment has been growing, the demand for various facilities and services regarding household duties and infant rearing is increasing and so do the amount of the disposable diaper used. Among the components of disposable diaper, the top sheet contacting with infant skin directly is usually made with nonwoven textiles. Therefore, the mechanical and surface characteristics of the nonwovens used in disposable diaper are important for the skin health of infants. In this study, we have explored the mechanical and surface properties, such as friction coefficient, fluid permeability and strength, of the nonwovens used for disposable diaper top sheet and observed the variation of their properties with abrasion cycles. Nonwoven materials examined in this study are 100% cotton spunlace, 100% tencel spunlace, 100% polypropylene (PP) thermal bonding and 100% PP air through (Thru-air bonded carded web). From the result of KES-F analysis, we've found that 100% PP air through type nonwoven had a low friction coefficient and showed a little change in surface properties as increasing abrasion cycles. Moreover, it revealed superior fluid permeability and quick-drying character. On the other hand, though showing an excellent absorption force, the spun lace type nonwoven made of 100% cotton and 100% tencel displayed relatively low abrasion strength especially in wetting condition.

클로로부틸 고무 함량이 클로로부틸 고무 블렌드물의 기계적 물성에 미치는 영향 (Effects of Chlorobutyl Rubber Content on the Mechanical Properties of Chlorobutyl Rubber Blends)

  • 박차철;표경덕
    • Elastomers and Composites
    • /
    • 제45권4호
    • /
    • pp.280-285
    • /
    • 2010
  • CIIR에 BR, SBR 및 NBR을 다양한 조성으로 혼합하여 블렌드물의 마찰계수와 내마모특성 및 물리적 특성 변화 등을 검토하였다. 영구압축줄음율 측정에서 블렌드비율 25%에서 가장 높은 값을 나타내어 변형에 대한 저항 특성이 가장 낮은 것으로 나타났다. SBR, NBR, BR이 CIIR에 블렌딩됨에 따라 블렌드물의 마찰계수는 산술평균적으로 저하하는 경향을 나타내었다. 마찰력 향상을 위하여 BR에 CIIR을 블렌딩하는 경우 마찰계수 증가에 의한 접지력 향상보다는 내마모 성능 저하에 의한 마이너스효과가 더욱 큰 것으로 나타났다.

Tribological and Mechanical Properties of UHMWPE/HDPE Composites

  • Na, Woo Seok;Lee, Kwang Ho;Kong, Tae Woong;Baek, Jung Youn;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • 제53권4호
    • /
    • pp.234-238
    • /
    • 2018
  • The influence of reinforcing UHMWPE powder on the tribological and mechanical properties of HDPE was investigated. The circularizing of UHMWPE powder was improved by high-speed rotation to enhance particle distribution and flowability. HDPE composites reinforced with UHMWPE powder in the range of 0-50 wt% were prepared by co-rotating twin screw extrusion. The abrasion resistance, plane friction coefficient, tensile strengths, and impact strengths of the composites were investigated as a function of the UHMWPE content. An increasing UHMWPE content decreased the plane friction coefficient and increased the abrasion resistance and impact strength. It is expected that HDPE composites reinforced with spherical UHMWPE powder particles can be used to improve the durability of products such as pipes in the future.

신발 밑창용 고무 블렌드물의 마찰 및 내마모 특성에 대한 연구 (A Study on the Friction and Anti-abrasion Properties of Rubber Blends for Shoes Outsole)

  • 표경덕;박차철
    • Elastomers and Composites
    • /
    • 제46권4호
    • /
    • pp.324-328
    • /
    • 2011
  • 신발 밑창용 CIIR에 BR, SBR 및 NBR을 다양한 조성으로 혼합하여 블렌드물의 내마모성과 마찰계수에 미치는 영향을 고찰하였다. CIIR이 BR에 블렌딩됨에 따라 CIIR이 BR의 결정 형성을 방해하며, 이것이 BR/CIIR 블렌드물의 내마모성을 급격히 감소하는 요인 중의 하나로 작용하는 것으로 이해된다. BR/CIIR 블렌드물에서 BR의 함량이 증가함에 따라 $tan{\delta}$ 피크 면적이 저하하였으며, 블렌드물의 마찰계수도 유사하게 저하하는 경향을 나타내었다. CIIR에 BR을 첨가함에 따라 블렌드물의 응력완화율 및 반발탄성이 감소하였으며, 블렌드물의 반발탄성에 영향을 미치는 것으로 추정된다.

Numerical simulation of concrete abrasion induced by unbreakable ice floes

  • Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.59-69
    • /
    • 2019
  • This paper focuses on the numerical simulation of ice abrasion induced by unbreakable ice floe. Under the assumption that unbreakable floes behave as rigid body, the Discrete Element Method (DEM) was applied to simulate the interaction between a fixed structure and ice floes. DEM is a numerical technique which is eligible for computing the motion and effect of a large number of particles. In DEM simulation, individual ice floe was treated as single rigid element which interacts with each other following the given interaction rules. Interactions between the ice floes and structure were defined by soft contact and viscous Coulomb friction laws. To derive the details of the interactions in terms of interaction parameters, the Finite Element Method (FEM) was employed. An abrasion process between a structure and an ice floe was simulated by FEM, and the parameters in DEM such as contact stiffness, contact damping coefficient, etc. were calibrated based on the FEM result. Resultantly, contact length and contact path length, which are the most important factors in ice abrasion prediction, were calculated from both DEM and FEM and compared with each other. The results showed good correspondence between the two results, providing superior numerical efficiency of DEM.

SM45C재의 UNSM 처리에 의한 트라이볼러지 특성 변화 (Variations in Tribology Factors of SM45C by UNSM Modification)

  • 심현보;서창민;서민수;아마노브;편영식
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.492-501
    • /
    • 2018
  • The following results were obtained from a series of studies to accumulate data to reduce the coefficient of friction for press dies by performing tribological tests before and after the UNSM treatment of SM45C. The UNSM-treated material had a nano-size surface texture, high surface hardness, and large and deep compressive residual stress formation. Even when the load was doubled, the small amount of abrasion, small weight of the abrasion, and width and depth of the abrasion did not increase as much as those for untreated materials. When loads of 5 N, 7.5 N, and 10 N were applied to the untreated material of SM45C, the coefficient of friction was approximately 0.76-0.78. With the large specimen, a value of 0.72-0.78 was maintained at a load of 50 N despite the differences in the size of the wear specimen and working load. Tribological tests of large specimens of SM45C treated with UNSM under tribological conditions of 100 N and 50 N showed that the frictional coefficient and time constant stably converged between 0.7 and 0.8. The friction coefficients of the small specimens treated with UNSM showed values between 0.78 and 0.75 under 5 N, 7.5 N, and 10 N. The friction coefficients of the SM45C treated with UNSM were comparable to each other.

풍화암 지반에서의 쉴드 TBM 커터도구 선정 및 마모량 평가 - 서울지하철 7호선연장 703공구 중심으로 (The Selection and Abrasion Assessment of Cutter on Shield Tunnelling in Weathered Soil - Seoul Subway Line 7 Extension, Construction Lot 703)

  • 김용일;이상한;정두석;임종윤;박광준;박준수
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2006년도 창립 25주년 기념 특별심포지엄
    • /
    • pp.59-79
    • /
    • 2006
  • 쉴드터널 공사에 있어서 커터도구의 절삭능력은 터널시공의 성패를 좌우하는 주요 변수이기 때문에 지반에 적합한 커터도구의 형상, 규격 및 재질의 선정은 무엇보다 중요하다. 1818년 쉴드공법 발명 이래 암반에 대한 커터도구는 많은 실험과 연구를 통해 발전해 왔으나, 풍화토 및 풍화암 지반에서의 커터도구에 대한 연구는 미진한 상황이다. 본 논고에서는 쉴드공법으로 설계된 서울지하철 7호선 연장 703공구 구간중 최대연장 920m의 풍화대 지반에 대하여 굴착중 커터도구의 무교체 시공과 굴착효율 증진을 위한 커터의 선정을 위하여 커터의 형상 및 재질에 대한 비교 분석을 하였으며, 그 선정사유에 대하여 소개하였다. 또한 국내외로 연구가 미진하였던 풍화토 및 풍화암 지반에서의 커터 마모량 평가방법을 제시하여 설계의 타당성을 검증하였으며, 특히 해외의 시공사례에 대한 분석을 통하여 커터 종류에 따른 지반별 마모계수를 제시하였다.

  • PDF