• Title/Summary/Keyword: Codonopsis pilosula Polysaccharide

Search Result 2, Processing Time 0.014 seconds

Effects of Selenizing Codonopsis pilosula Polysaccharide on Macrophage Modulatory Activities

  • Qin, Tao;Ren, Zhe;Lin, Dandan;Song, Yulong;Li, Jian;Ma, Yufang;Hou, Xuehan;Huang, Yifan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1358-1366
    • /
    • 2016
  • The purpose of the present study was to investigate the immune-enhancing activity of selenizing Codonopsis pilosula polysaccharide (sCPPS5) in nonspecific immune response. In in vitro experiment, the results showed that sCPPS5 could promote the phagocytic uptake, NO production, and TNF-α and IL-6 secretion of RAW264.7 cells. sCPPS5 could also strongly increase the IκB-α degradation in the cytosol and the translocation of NF-κB p65 subunit into the nucleus of RAW264.7 cells. In the vivo experiment, sCPPS5 at medium doses could significantly improve the phagocytic index of peritoneal macrophages and induce the secretion of TNF-α and IL-6. Moreover, the effect of sCPPS5 was significantly better than Codonopsis pilosula polysaccharide (CPPS). These results indicated that selenylation modification could significantly enhance the immune-enhancing activity of CPPS in the nonspecific immune response.

Effect of Codonopsis pilosula polysaccharide on the quality of sheep semen preservation at 4℃

  • Yuqin Wang;Yanhong Zhao;Hua Chen;Tingting Lu;Rujie Yang;Xiuxiu Weng;Wanhong Li
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1001-1006
    • /
    • 2024
  • Objective: This study aimed to investigate the effect of Codonopsis pilosula polysaccharide (CPP) on the motility, mitochondrial integrity, acrosome integrity rate, and antioxidant ability of sheep sperm after preservation at 4℃. Methods: Semen from healthy adult rams were collected and divided into four groups with separate addition of 0, 200, 400, and 1,000 mg/L CPP. Sperm motility was analyzed using the Computer-Assisted Semen Analysis software after preservation at 4℃ for 24, 72, 120, and 168 h. Sperm acrosome integrity rate was analyzed by Giemsa staining at 24, 72, and 120 h, and mitochondrial membrane integrity was analyzed by Mito-Tracker Red CMXRos. The total antioxidant capacity (T-AOC) and malondialdehyde (MDA) content of spermatozoa were measured after 120 h of preservation. Results: The sperm viability and forward-moving sperm under 200 mg/L CPP were significantly higher than that in the control group at 72 h (61.28%±3.89% vs 52.83%±0.70%, 51.53%±4.06% vs 42.84%±1.14%), and 168 h (47.21%±0.85% vs 41.43%±0.37%, 38.68%±0.87% vs 31.68%±0.89%). The percentage of fast-moving sperm (15.03%±1.10% vs 11.39%±1.03%) and slow-moving sperm (23.63%±0.76% vs 20.29%±1.11%) in the 200 mg/L group was significantly higher than control group at 168 h. The mitochondrial membrane integrity of the sperm in the group with 200 mg/L CPP was significantly higher than those in the control group after storage at 4℃ for 120 h (74.76%±2.54% vs 65.67%±4.51%, p<0.05). The acrosome integrity rate in the group with 200 mg/L (87.66%±1.26%) and 400 mg/L (84.00%±2.95%) was significantly higher than those in the control group (80.65%±0.16%) after storage for 24 h (p<0.05). CPP also increased T-AOC and decreased the MDA concentration after preservation at 4℃ (p<0.05). Conclusion: Adding CPP could improve the T-AOC of sperm, inhibit lipid peroxidation, and facilitate semen preservation.