• Title/Summary/Keyword: Coded MIMO

Search Result 87, Processing Time 0.024 seconds

Performance Improvement of MIMO MC-CDMA system with multibeamforming

  • Kim, Chan Kyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.76-83
    • /
    • 2019
  • In this paper, we propose the beamforming algorithm for the performance improvement of MIMO MC-CDMA system. The proposed multibeamforming of MIMO MC-CDMA structure having the same number of beamformer as the number of transmit antenna is derived by calculating the error signals between the coded pilot symbols and the corresponding received signals from the multiple transmitters of the desired user in the frequency domain, transforming the frequency-domain error signals into time-domain error signals, and updating the weights of the multibeamformer in the time-domain in the direction minimizing the mean squared error (MSE). The proposed approach can track each direction of arrival (DOA) of the signals from multi-antennas of a desired user. The performance improvement is investigated through computer simulation by applying the proposed approach to MIMO MC-CDMA system in a multipath fading channel with multiusers.

Progressive Edge-Growth Algorithm for Low-Density MIMO Codes

  • Jiang, Xueqin;Yang, Yi;Lee, Moon Ho;Zhu, Minda
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.639-644
    • /
    • 2014
  • In low-density parity-check (LDPC) coded multiple-input multiple-output (MIMO) communication systems, probabilistic information are exchanged between an LDPC decoder and a MIMO detector. TheMIMO detector has to calculate probabilistic values for each bit which can be very complex. In [1], the authors presented a class of linear block codes named low-density MIMO codes (LDMC) which can reduce the complexity of MIMO detector. However, this code only supports the outer-iterations between the MIMO detector and decoder, but does not support the inner-iterations inside the LDPC decoder. In this paper, a new approach to construct LDMC codes is introduced. The new LDMC codes can be encoded efficiently at the transmitter side and support both of the inner-iterations and outer-iterations at the receiver side. Furthermore they can achieve the design rates and perform very well over MIMO channels.

Polar coded cooperative with Plotkin construction and quasi-uniform puncturing based on MIMO antennas in half duplex wireless relay network

  • Jiangli Zeng;Sanya Liu
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.175-183
    • /
    • 2024
  • Recently, polar code has attracted the attention of many scholars and has been developed as a code technology in coded-cooperative communication. We propose a polar code scheme based on Plotkin structure and quasi-uniform punching (PC-QUP). Then we apply the PC-QUP to coded-cooperative scenario and built to a new coded-cooperative scheme, which is called PCC-QUP scheme. The coded-cooperative scheme based on polar code is studied on the aspects of codeword construction and performance optimization. Further, we apply the proposed schemes to space-time block coding (STBC) to explore the performance of the scheme. Monte Carlo simulation results show that the proposed cooperative PCC-QUP-STBC scheme can obtain a lower bit error ratio (BER) than its corresponding noncooperative scheme.

Efficient Power Allocation Algorithms for Adaptive Spatial Multiplexing MIMO Systems (적응 공간 다중화 MIMO 시스템을 위한 효율적인 전력 할당 알고리즘)

  • Shin, Joon-Ho;Kim, Dong-Geon;Park, Hyung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4C
    • /
    • pp.232-240
    • /
    • 2011
  • While the water-filling algorithm is an efficient power allocation method that maximizes the ergodic capacity of adaptive MIMO systems, its excessive residual power causes spectrum loss in real systems employing discrete modulation indices. In this paper we propose new power allocation algorithms that improve the spectral efficiency of MIMO systems by efficiently reallocating the residual power of the water-filling algorithm. We apply the proposed algorithms to the adaptive turbo-coded MIMO system to verify their performance through computer simulation in various environments. Simulation results show that the spectral efficiency of the proposed algorithms is better than that of the water-filling algorithm by about 8.9% at SNR of 20dB in Rayleigh fading environments.

Iterative Decoding for LDPC Coded MIMO-OFDM Systems with SFBC Encoding (주파수공간블록부호화를 적용한 MIMO-OFDM 시스템을 위한 반복복호 기법)

  • Sohn Insoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5A
    • /
    • pp.402-406
    • /
    • 2005
  • A multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system using low-density parity-check (LDPC) code and iterative decoding is presented. The iterative decoding is performed by combining the zero-forcing technique and LDPC decoding through the use of the 'turbo principle.' The proposed system is shown to be effective with high order modulation and outperforms the space frequency block code (SFBC) method with iterative decoding.

Throughput Improvement of Adaptive Modulation System with an Efficient Turbo-Coded V-BLAST Technique in each MIMO Channel

  • Ryoo, Sang-Jin;Kim, Seo-Gyun;Na, Cheol-Hun;Hong, Jin-Woo;Hwang, In-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.905-908
    • /
    • 2008
  • In this paper, an Adaptive Modulation (AM) system with an efficient turbo-coded Vertical-Bell-lab Layered Space-Time (V-BLAST) technique is proposed. The proposed decoding algorithm adopts iteratively the extrinsic information from a Maximum a Posteriori (MAP) decoder as a priori probability in the two decoding procedures of the V-BLAST scheme of ordering and slicing. In this analysis, each MIMO channel is assumed to be a part of the system of performance improvement.

  • PDF

Performance Improvement of Alamouti coded OFDM System under Co-Channel Interference (Co-Channel Interference 환경에서 Alamouti coded OFDM System의 성능개선)

  • Lee, Sung-Geun;Oh, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.390-391
    • /
    • 2008
  • 대용량의 이동 고속통신 환경 하 에서 다중경로 페이딩에 의한 성능열화 영향을 효과적으로 줄이고, 용량을 극대화하기 위해 MIMO(Multi-Input Multi-Output) 와 OFDM (Orthogonal Frequency Division Multiplexing) 기술들이 차세대 이동통신시스템으로 최근에 각광을 받고 있다. 그러나 cellular 시스템에서는 Co-Channel Interference의 영향을 피할 수도 없으며, 그 영향 또한 그 무엇보다도 크다. 그러므로 본 논문에서는 이러한 MIMO OFDM 시스템의 Co-Channel Interference 의 영향을 줄이고 성능 향상을 위해 Interference Cancelling 기법을 응용한 STBC-OFDM 시스템의 성능을 MATLAB simulation을 통해 기술하였다.

  • PDF

Joint OSIC and Soft ML Decoding Scheme for Coded Layered Space-Time OFDM Systems

  • Lee, Hye-Jeong;Chung, Jae-Ho;Park, Se-Jun;Lee, Seong-Choon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.487-493
    • /
    • 2008
  • In this paper, we consider coded layered space-time architecture in MIMO-OFDM channels. Vertical Bell Lab Layered Space-Time(V-BLAST) scheme employing ordered successive interference cancellation(OSIC) algorithm provides very high spectral efficiency with low computational complexity. However, the error propagation is a major drawback constraining the overall performance of the V-BLAST system significantly. Based on this problem, we derive an improved detector using soft bit log-likelihood ratio(LLR) value. Simulation results show that the proposed detector outperforms the conventional V-BLAST scheme under spatially uncorrelated as well as correlated fading channels.

Quasi-Orthogonal STBC with Iterative Decoding in Bit Interleaved Coded Modulation

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.426-433
    • /
    • 2008
  • In this paper, we present a method to improve the performance of the four transmit antenna quasi-orthogonal space-time block code (STBC) in the coded system. For the four transmit antenna case, the quasi-orthogonal STBC consists of two symbol groups which are orthogonal to each other, but intra group symbols are not. In uncoded system with the matched filter detection, constellation rotation can improve the performance. However, in coded systems, its gain is absorbed by the coding gain especially for lower rate code. We propose an iterative decoding method to improve the performance of quasi-orthogonal codes in coded systems. With conventional quasi-orthogonal STBC detection, the joint ML detection can be improved by iterative processing between the demapper and the decoder. Simulation results shows that the performance improvement is about 2dB at 1% frame error rate.

Improved Differential Detection Scheme of Space-Time Trellis Coded MDPSK For MIMO (MIMO에서 시공간 부호화된 MDPSK의 성능을 향상시키기 위한 차동 검파 시스템)

  • Kim, Chong-Il;Lee, Ho-Jin;Yoo, Hang-Youal;Kim, Jin-Yong;Kim, Seung-Youal
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1869-1876
    • /
    • 2006
  • Recently, STC techniques have been considered to be candidate to support multimedia services in the next generation mobile radio communications and have been developed the many communications systems in order to achieve the high data rates. In this paper, we Nose the Trellis-Coded Differential Space Time Modulation system with multiple symbol detection. The Trellis-code performs the set partition with unitary group codes. The Viterbi decoder containing new branch metrics is introduced in order to improve the bit error rate (BER) in the differential detection of the unitary differential space time modulation. Also, we describe the Viterbi algorithm in order to use this branch metrics. Our study shows that such a Viterbi decoder improves BER performance without sacrificing bandwidth and power efficiency.