• Title/Summary/Keyword: Code injection

Search Result 310, Processing Time 0.021 seconds

Effects of Injection Pressure and Injection Angle on Spray Characteristics in Loop Scavenged Type 2-stroke Engines (루프소기형태의 2행정기관에서 분사압력 및 분사각도에 따른 분무특성 연구)

  • Chae, S.;Ryou, H. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.165-176
    • /
    • 1996
  • The flow field and spray characteristics for loop scavenged type 2stroke engine having pancake shape was numerically computed using KIVA-Ⅱ code. The cylinder has 1intake port, 2side intake ports and 1exhaust port with induced flow angle 25 deg. In engine calculation, the chop techniques is used to strip or add planes of cells across the mesh adjacent to the TDC and the BDC(ports parts) for preventing the demand of exceed time during the computation, providing a control on cell height in the squish region. The modified turbulent model including the consideration of the compressibility effect due to the compression and expansion of piston was also used. The case of 25 deg.(injection angle) which is opposite to scavenging flow direction shows better the distribution of droplets and the evaporation rate of droplets compared to other cases(0 deg., - 25 deg.). When injection pressure was increased, the spray tip penetration became longer. When injection pressure was increased, the interaction between the upward gas velocity and spray droplets strongly cause. Thus the breakup of droplets is strongly occurred and the evaporation rate of droplets was found to be better.

  • PDF

Reduction of a Numerical Grid Dependency in High-pressure Diesel Injection Simulation Using the Lagrangian-Eulerian CFD Method (Lagrangian-Eulerian 기법을 이용한 고압 디젤 분무 시뮬레이션의 수치해석격자 의존성 저감에 관한 연구)

  • Kim, Sa-Yop;Oh, Yun-Jung;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • In the standard CFD code, Lagrangian-Eulerian method is very popular to simulate the liquid spray penetrating into gaseous phase. Though this method can give a simple solution and low computational cost, it have been reported that the Lagrangian spray models have numerical grid dependency, resulting in serious numerical errors. Many researches have shown the grid dependency arise from two sources. The first is due to unaccurate prediction of the droplet-gas relative velocity, and the second is that the probability of binary droplet collision is dependent on the grid resolution. In order to solve the grid dependency problem, the improved spray models are implemented in the KIVA-3V code in this study. For reducing the errors in predicting the relative velocity, the momentum gain from the gaseous phase to liquid particles were resolved according to the gas-jet theory. In addition, the advanced algorithm of the droplet collision modeling which surmounts the grid dependency problem was applied. Then, in order to validate the improved spray model, the computation is compared to the experimental results. By simultaneously regarding the momentum coupling and the droplet collision modeling, successful reduction of the numerical grid dependency could be accomplished in the simulation of the high-pressure injection diesel spray.

Unpacking Technique for In-memory malware injection technique (인 메모리 악성코드 인젝션 기술의 언 패킹기법)

  • Bae, Seong Il;Im, Eul Gyu
    • Smart Media Journal
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • At the opening ceremony of 2018 Winter Olympics in PyeongChang, an unknown cyber-attack occurred. The malicious code used in the attack is based on in-memory malware, which differs from other malicious code in its concealed location and is spreading rapidly to be found in more than 140 banks, telecommunications and government agencies. In-memory malware accounts for more than 15% of all malicious codes, and it does not store its own information in a non-volatile storage device such as a disk but resides in a RAM, a volatile storage device and penetrates into well-known processes (explorer.exe, iexplore.exe, javaw.exe). Such characteristics make it difficult to analyze it. The most recently released in-memory malicious code bypasses the endpoint protection and detection tools and hides from the user recognition. In this paper, we propose a method to efficiently extract the payload by unpacking injection through IDA Pro debugger for Dorkbot and Erger, which are in-memory malicious codes.

In-Plane Deformation Analysis and Design of Experiments Approach for Injection Molding of Light Guide Plate for LCDs

  • Lee Ho-Sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.51-56
    • /
    • 2006
  • A computer code was developed to simulate both the thermal stresses introduced during the post-filling stage and the in-plane deformation after ejection process by finite element method based on the plane stress theory. The computer simulation was applied to the mold design of a 2 inch light guide plate (LGP) for thin film transistor (TFT)-liquid crystal displays (LCD). With injection molding experiments based on the design of experiments (DOE) technique, the influences of the processing conditions in injection molding on brightness and uniformity of the LGP were investigated, and the optimal processing parameters were selected to increase the brightness and uniformity. The verification experiment showed that the brightness and uniformity of the LGP were increased dramatically under the selected optimal processing conditions.

Numerical Simulation of Flow-Induced Birefringence in Injection Molded Disk

  • Lee H. S.;Shyu G. D.;Isayev A. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.41-47
    • /
    • 2003
  • This study is an attempt to understand the birefringence and stress development in an injection molded disk. A computer code was developed to simulate all three stages of the injection molding process - filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. The predicted birefringence was in good agreement with the experimental results.

  • PDF

Numerical simulation of flow-induced birefringence in injection molded disk

  • Shyu, Goang-Ding;Avraam I. Isayev;Lee, Ho-Sang
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.4
    • /
    • pp.159-166
    • /
    • 2003
  • This study is an attempt to understand the birefringence and stress development in an injection molded disk. A computer code was developed to simulate all three stages of the injection molding process filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. The predicted birefringence was in good agreement with the experimental results.

CONDITIONAL MOMENT CLOSURE MODELING OF TURBULENT SPRAY COMBUSTION IN A DIRECT INJECTION DIESEL ENGINE

  • HAN I. S.;HUH K. Y.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.571-577
    • /
    • 2005
  • Combustion of turbulent sprays in a direct injection diesel engine is modeled by the conditional moment closure (CMC) model. The CMC routines are combined with the KIVA code to provide conditional flame structures to determine mean state variables, instead of mean reaction rates. An independent transport equation is solved for each flame group with equal mass of sequentially evaporating fuel vapor. CMC calculation begins as the fuel mass for each flame group begins to evaporate with corresponding initialization conditions. Comparison is made with measured pressure traces for four operating conditions at different rpm's and injection conditions. Results show that the CMC model with multiple flame histories can successfully be applied to ignition and mixing-controlled combustion phases of a diesel engine.

Numerical Analysis of Interior Ballistics for Ignition Injection (점화제 주입에 따른 강내탄도 수치해석)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Kim, In-Joo;Choi, Dong-Whan;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.211-214
    • /
    • 2009
  • Using the numerical code for the interior ballistics, the performance of the interior ballistics with the characteristic of the ignition injection has been investigated. When the maximum position of ignition injection is near the base, the pressure distribution at the chamber of the interior ballistics was uniform and the final projectile velocity is increased.

  • PDF

An Automated Classification and Coding System for Structure of Injection Mold (사출금형구조의 자동분류코딩시스템의 개발)

  • Cho, Kyu-Kab;Jung, Young-Deug;Oh, Soo-Cheol;Jung, Hyun-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.60-67
    • /
    • 1989
  • An automated classification and coding system for structure of injection mold is developed based on the statistical analysis and the critical evaluation of the results for the sample survey of 200 assembly drawings of injection mold. The proposed system is a mixed code system consisting of 15 digits and each digit consists of 10 numerical codes. An interactive computer program is developed by using TURBO PASCAL on IBM PC/AT compatible system. A case study is discussed to show the procedure and the function of the system. The results for applications of the system to real problems show that the system works well and is useful for design, manufacturing and management of injection mold.

  • PDF

Numerical Simulation of Flow-Induced Birefringence in Injection/Compression Molding (사출압축성형에서의 유동에 의한 복굴절 해석)

  • Lee H.-S.;Isayev A.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.65-69
    • /
    • 2004
  • A computer code was developed to simulate the filling stage of the injection/compression molding process by a finite element method. The constitutive equation used here was the compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk part under different processing conditions including the variation of compression stroke and compression speed were carried out to understand their effects on flow-induced birefringence. The simulated results were also compared with those by conventional injection molding and with experimental data from literature.

  • PDF