• Title/Summary/Keyword: Code Propagation

Search Result 294, Processing Time 0.021 seconds

The Phase Estimation Algorithm of Arrival Time Difference in MIMO Underwater Sensor Communication (MIMO 수중 통신에서 도착시간 차이에 따른 보상 알고리즘)

  • Baek, Chang-uk;Jung, Ji-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1531-1538
    • /
    • 2015
  • In this paper, we proposed receiver structure based on an iterative turbo equalization to cope with phase difference between two sensors in MIMO underwater communication channel. In a space-time coded system, it is often assumed that there are no phase errors among the multiple transmitter and receiver chains. In this paper, we have studied the effect of the phase errors between different transmit sensors and different propagation paths in the environment of MIMO underwater communication system, and have shown through BER performance by computer simulations that the bit-error-rate performance can be severely degraded. A decision-directed estimation and compensation algorithm has been proposed to minimize their effects on the system performance. In this paper, we investigate the phase differences and their effects on multiple-input and multiple-output systems, and propose a compensation algorithm for underwater channel model to minimize their effects.

A Study of Probabilistic Groundwater Flow Modeling Considering the Uncertainty of Hydraulic Conductivity (수리전도도의 불확실성을 고려한 확률론적 지하수 유동해석에 관한 연구)

  • Ryu Dong-Woo;Son Bong-Ki;Song Won-Kyong;Joo Kwang-Soo
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.145-156
    • /
    • 2005
  • MODFLOW, 3-D finite difference code, is widely used to model groundwater flow and has been used to assess the effect of excavations on the groundwater system due to construction of subways and mountain tunnels. The results of numerical analysis depend on boundary conditions, initial conditions, conceptual models and hydrogeological properties. Therefore, its accuracy can only be enhanced using more realistic and field oriented input parameters. In this study, SA(simulated annealing) was used to integrate hydraulic conductivities from a few of injection tests with geophysical reference images. The realizations of hydraulic conductivity random field are obtained and then groundwater flows in each geostatistically equivalent media are analyzed with a numerical simulation. This approach can give probabilistic results of groundwater flow modeling considering the uncertainty of hydrogeological medium. In other words, this approach makes it possible to quantify the propagation of uncertainty of hydraulic conductivities into groundwater flow.

Uncertainty Analysis for Seakeeping Model Tests (정현파 중 운동모형시험에 대한 불확실성 해석)

  • Deuk-Joon Yum;Ho-Young Lee;Choung-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.75-89
    • /
    • 1993
  • The present paper describes an application of UA(Uncertainty Analysis) to seakeeping model test, basically according to the Performance Test Code of ASME(American Society of Mechanical Engineers), in which all the possible error sources involved in the preparation of test, calibration of instruments, data acquisition and analysis are quantified, and summed up with error propagation coefficients to the final uncertainties. The differences between the static test such as resistance and propulsion test and the dynamic test like seakeeping test are clearly identified during all the procedures of UA and asymmetric bias errors are considered. The DRE(data reduction equation) subject to present UA are the heave and pitch response amplitude operator and nondimensionalized absolute frequency. The usefulness of UA in seakeeping test were confirmed not only for quantifying errors and improving measurement accuracy but also for the validation of various seakeeping analysis tools.

  • PDF

A study on the phenomenon of new-tro expressed in fashion - Focus on music video costume style - (패션에 표현된 뉴트로(New-tro)현상에 대한 연구 - 뮤직비디오 의상스타일을 중심으로 -)

  • Park, Song-Ae
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.3
    • /
    • pp.137-147
    • /
    • 2019
  • The purpose of this study, I investigate the new trend, 'new-tro', through the music video costumes of young generations, and analyze the meaning and characteristics of 'new-tro'. The research method is, select 30 music video with new-tro fashion style on the music sites, and the fashion styles were analyzed in 11 music videos checked and selected by 100 students. As a definition of the term, 'retro' refers to a phenomenon in which the past reappears in modern time, and 'new-tro' is a new retro trend, a social phenomenon that enjoys the old with a modern sense, and is a compound word of 'new' and 'retro'. 'new-tro' is a modern reinterpretation and rebirth of the past style, and 'fu-tro' is a style of coexistence between the past and the future. In the music video, fashion is a media language and cultural code, and it creates trend or new fashion, that communicates with the public, stimulating emotions. As a result of the research, the common trend phenomenon expressed in the music video costume of 'new-tro' trend which appeared in 2000s is as follows. 1. New-tro style starts with items that were famous in the past. 2. It is one of postmodern marketing using color, print and logo. 3. It spreads quickly by the influence of culture that is characteristic of the Internet and SNS world. 4. It is bottom up propagation phenomenon of street fashion. 5. It is a time game where modern people connect the past with the present. 6. "new-tro" continues to evolve for that time, based on 'retro'. New-tro, an evolutionary version of the 21st century retro wave. and it is a key to marketing effectiveness as a sympathetic elements of 1020 generations with the reproduction of memories.

Analysis of Transceiver Structure and Experimental Results of Underwater Acoustic Communication Using the Sub-band (부 대역을 이용한 수중 음향 통신 송수신 구조 및 실험 결과 분석)

  • Jeong, Hyun-Woo;Shin, Ji-Eun;Jung, Ji-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.545-555
    • /
    • 2020
  • This paper presented efficient transceiver structure using sub-band processing for underwater communication in terms of covertness and performance improvement. In aspect of covertness, encrypted coded-bits are divided into groups, and center frequency and sub band are determined by coded-bits of each group. Therefore, as center frequencies are changed randomly, it maintain the covertness effectively. In aspect of performance improvement, the performance of underwater communication mainly depends on multi-path propagation characteristics, Doppler-spread, and frame synchronization. Accordingly, in order to overcome these effects, non-coherent energy detector and turbo equalization method are employed in receiver side. Furthermore, optimal frame synchronization was proposed. Through the simulation and lake experiment, performance analysis was conducted. Especially in the lake experiment, as a result of applying optimal frame synchronization method to receiver structure, errors are corrected in most frames.

Simulation study on the mechanical properties and failure characteristics of rocks with double holes and fractures

  • Pan, Haiyang;Jiang, Ning;Gao, Zhiyou;Liang, Xiao;Yin, Dawei
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.93-105
    • /
    • 2022
  • With the exploitation of natural resources in China, underground resource extraction and underground space development, as well as other engineering activities are increasing, resulting in the creation of many defective rocks. In this paper, uniaxial compression tests were performed on rocks with double holes and fractures at different angles using particle flow code (PFC2D) numerical simulations and laboratory experiments. The failure behavior and mechanical properties of rock samples with holes and fractures at different angles were analyzed. The failure modes of rock with defects at different angles were identified. The fracture propagation and stress evolution characteristics of rock with fractures at different angles were determined. The results reveal that compared to intact rocks, the peak stress, elastic modulus, peak strain, initiation stress, and damage stress of fractured rocks with different fracture angles around holes are lower. As the fracture angle increases, the gap in mechanical properties between the defective rock and the intact rock gradually decreased. In the force chain diagram, the compressive stress concentration range of the combined defect of cracks and holes starts to decrease, and the model is gradually destroyed as the tensile stress range gradually increases. When the peak stress is reached, the acoustic emission energy is highest and the rock undergoes brittle damage. Through a comparative study using laboratory tests, the results of laboratory real rocks and numerical simulation experiments were verified and the macroscopic failure characteristics of the real and simulated rocks were determined to be similar. This study can help us correctly understand the mechanical properties of rocks with defects and provide theoretical guidance for practical rock engineering.

Evaluation of Internal Blast Overpressures in Test Rooms of Elcetric Vehicles Battery with Pressure Relief Vents (압력배출구를 설치한 전동화 차량 배터리 시험실의 내부 폭압 평가)

  • Pang, Seungki;Shin, Jinwon;Jeong, Hyunjin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.7-18
    • /
    • 2022
  • Secondary batteries used in electric vehicles have a potential risk of ignition and explosion. Various safety measures are being taken to prevent these risks. A numerical study was performed using a computational fluid dynamics code on the cases where pressure relief vents that can reduce the blast overpressures of batteries were installed in the through-compression test room, short-circuit drop test room, combustion test room, and immersion test room in facilities rleated to battery used in electric vehicles. This study was conducted using the weight of TNT equivalent to the energy release from the battery, where the the thermal runaway energy was set to 324,000 kJ for the capacity of the lithium-ion battery was 90 kWh and the state of charge (SOC) of the battery of 100%. The explosion energy of TNT (△HTNT) generally has a range of 4,437 to 4,765 kJ/kg, and a value of 4,500 kJ/kg was thus used in this study. The dimensionless explosion efficiency coefficient was defined as 15% assuming the most unfavorable condition, and the TNT equivalent mass was calculated to be 11 kg. The internal explosion generated in a test room shows the very complex propagation behavior of blast waves. The shock wave generated after the explosion creates reflected shock waves on all inner surfaces. If the internally reflected shock waves are not effectively released to the outside, the overpressures inside are increased or maintained due to the continuous reflection and superposition from the inside for a long time. Blast simulations for internal explosion targeting four test rooms with pressure relief vents installed were herein conducted. It was found that that the maximum blast overpressure of 34.69 bar occurred on the rear wall of the immersion test room, and the smallest blast overpressure was calculated to be 3.58 bar on the side wall of the short-circuit drop test room.

Analysis of Fine Particle Transfer and Shear Strength Increase Using PFC in Permeation Grouting (PFC를 이용한 침투그라우팅시 미세입자의 이동 및 전단강도증가 해석)

  • Lee, Wan-Ho;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.49-58
    • /
    • 2007
  • Numerical experiments using a distinct element code (PFC3D) were carried out for the analysis of grout-material transfer in soil layers and also for the analysis of increase in mechanical strength after permeation grouting. For rapid analysis, up-scaling analysis in length scale was adopted, and the following observations were made from the numerical experiments. Firstly, the relative size of grout material with respect to the in situ soil particles controlled the transfer distance of the grout particles. When the size of grout particle was 0.2 to 0.25 times of the in situ soil particles, clogging of pore spaces among the in situ soil particles occurred, resulting in restricted propagation of grout particles. It was also found that there was a threshold value in the size of grout particle. Below the threshold value, the transfer distance of the grout particle did not increase with the decrease of particle size of the grout material. Secondly, the increase in cohesion and internal friction angle was observed in the numerical specimen with grouting treatment, but not with the untreated specimen.

Cracking Behavior of RC Tension Members Reinforced with Amorphous Steel Fibers (비정질 강섬유로 보강된 철근콘크리트 인장부재의 균열거동)

  • Park, Kyoung-Woo;Lee, Jun-Seok;Kim, Woo;Kim, Dae-Joong;Lee, Gi-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.475-482
    • /
    • 2014
  • This paper presents the experimental results concentrically reinforced concrete tension members and compares cracking behavior of amorphous steel fiber and normal steel fiber reinforced concrete members. Two kind of steel fibers were included as a major experimental parameter together with the six cover thickness to bar diameter ratio ($c/d_b$). The presence of amorphous steel fibers effectively controlled the splitting cracks initation and propagation. In the amorphous steel fiber reinforced specimens, no splitting cracks were observed that becomes higher with cover thickness to bar diameter ratio is 2.0. Crack spacing of the each specimens reinforced with amorphous steel fibers and normal steel fibers becomes larger with the increase in cover thickness, and also measured maximum and average crack spacing are significantly smaller than current design code provision. Based on the measured crack spacings, a relationships for predicting the crack spacing is proposed using the measured average crack spacing in amorphous steel fiber reinforced concrete tension members.

Implementation of LDPC Decoder using High-speed Algorithms in Standard of Wireless LAN (무선 랜 규격에서의 고속 알고리즘을 이용한 LDPC 복호기 구현)

  • Kim, Chul-Seung;Kim, Min-Hyuk;Park, Tae-Doo;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2783-2790
    • /
    • 2010
  • In this paper, we first review LDPC codes in general and a belief propagation algorithm that works in logarithm domain. LDPC codes, which is chosen 802.11n for wireless local access network(WLAN) standard, require a large number of computation due to large size of coded block and iteration. Therefore, we presented three kinds of low computational algorithms for LDPC codes. First, sequential decoding with partial group is proposed. It has the same H/W complexity, and fewer number of iterations are required with the same performance in comparison with conventional decoder algorithm. Secondly, we have apply early stop algorithm. This method reduces number of unnecessary iterations. Third, early detection method for reducing the computational complexity is proposed. Using a confidence criterion, some bit nodes and check node edges are detected early on during decoding. Through the simulation, we knew that the iteration number are reduced by half using subset algorithm and early stop algorithm is reduced more than one iteration and computational complexity of early detected method is about 30% offs in case of check node update, 94% offs in case of check node update compared to conventional scheme. The LDPC decoder have been implemented in Xilinx System Generator and targeted to a Xilinx Virtx5-xc5vlx155t FPGA. When three algorithms are used, amount of device is about 45% off and the decoding speed is about two times faster than convectional scheme.