• Title/Summary/Keyword: Cod Industry

Search Result 180, Processing Time 0.026 seconds

국내 폐탄광 광산배수 자연정화처리시설의 가동현황 연구

  • 지상우;고주인;김효범;강희태;김재욱;김선준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.352-355
    • /
    • 2003
  • 27 passive systems in 21 mines constructed by The Coal Industry Promotion Board since 1996 were investigated to evaluate the treatment efficiency of systems and find problems in each system, which will eventually lead to the improvement or suggesting the alternative method of the passive treatment system. Problems in operation include overflow, leakage, inefficiency and unusablness. The efficiency of systems which has been evaluated by metal(Fe) removal rate and/or by acidity removal rate do not reflect the poor removal rate of S $O_4$$^{2-}$. Especially high concentration of S $O_4$$^{2-}$ and high COD in the beginning of the operation would decrease the bacteria activity due to the lack of the nutrition. To solve the problem of overflow the upflow-type SAPS is being considered.

  • PDF

A Study on the Recycling of Metals and Removal of Organics By Electrochemical Treatment of Mixed Waste Water of Surface Finishing Industry (표면처리 공정에서 발생하는 혼합 폐수의 전기화학적 처리에 의한 중금속의 재활용 및 유기물의 제거에 관한 연구)

  • 김영석;이중배
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.184-193
    • /
    • 2003
  • Cyclic sweep voltametry was performed to investigate the electrochemical behavior of heavy metal ions and the organic additives in surface finishing process. And electrolysis using parallel plate electrode electrolyzer was carried out to simulate the treatment of real waste water. Results showed that more than 99 percent of Cu was recovered and selective recovery of Cu in mixed waste water was possible, but the possibility of economical recovery of Ni and Cr were very low due to the evolution of hydrogen gas. Electrochemical oxidation of cyanide and organic additives on anode showed very excellent removal rate. The complete removal of several hundred ppm of cynide was possible within several tens minutes and organics within 2 or 3 hours. Even in case of concentrate waste water, the complete removal of COD by using NaCl and air stirring seemed to be possible.

Electricity Generation and De-contamination Effect for Characteristic Electrode Material in a Microbial Fuel Cell System Using Bay Sediment (MFC의 금속 및 탄소전극에 의한 전기생산 특성과 오염저감 효과)

  • Kwon, Sung-Hyun;Song, Hyung-Jin;Lee, Eun-Mi;Cho, Dae-Chul;Rhee, In-Hyoung
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.951-960
    • /
    • 2010
  • Sediment works as a resource for electric cells. This paper was designed in order to verify how sediment cells work with anodic material such as metal and carbon fiber. As known quite well, sediment under sea, rivers or streams provides a furbished environment for generating electrons via some electron transfer mechanism within specific microbial population or corrosive oxidation on the metal surfaces in the presence of oxygen or water molecules. We experimented with one type of sediment cell using different anodic material so as to attain prolonged, maximum electric power. Iron, Zinc, aluminum, copper, zinc/copper, and graphite felt were tested for anodes. Also, combined type of anodes-metal embedded in the graphite fiber matrix-was experimented for better performances. The results show that the combined type of anodes exhibited sustainable electricity production for ca. 600 h with max. $0.57\;W/m^2$ Al/Graphite. Meanwhile, graphite-only electrodes produced max. $0.11\;W/m^2$ along with quite stationary electric output, and for a zinc electrode, in which the electricity generated was not stable with time, therefore resulting in relatively sharp drop in that after 100 h or so, the maximum power density was $0.64\;W/m^2$. It was observed that the corrosive reaction rates in the metal electrodes might be varied, so that strength and stability in the electric performances(voltage and current density) could be affected by them. In addition to that, COD(chemical oxygen demand) of the sediment of the cell system was reduced by 17.5~36.7% in 600 h, which implied that the organic matter in the sediment would be partially converted into non-COD substances, that is, would suggest a way for decontamination of the aged, anaerobic sediment as well. The pH reduction for all electrodes could be a sign of organic acid production due to complicated chemical changes in the sediment.

Eutrophication in the Namhae Coastal Sea 2. The Aspects of Eutrophication of Bottom Mud and Surface Seawater in the Namhae Coastal Seas (남해 연안해역의 부영양화 2. 남해 연안해역의 저질 및 수질의 부영양화 실태)

  • Kim, Sung-Jae
    • Journal of Wetlands Research
    • /
    • v.3 no.2
    • /
    • pp.107-118
    • /
    • 2001
  • The aim of this paper is to grasp eutrophication aspects in Namhae coastal seas, statistically analyzing existing data for their surface seawater and bottom mud. A pollution level(ignition loess) of bottom mud, on the whole, trended to increase as moving the coastal sea around Mokpo-Wando toward the east(Gyeongnam Namhae coastal seas). Especially, the pollution level(ignition loss=10.5%) of bottom mud for the coastal sea around Tongyeong-Keoje-Gosung was similar to that(10.3%) for the coastal sea around Masan-Jinhae, whose coastal marine pollution was the severest in Namhae coastal seas. It indicates that large amounts of pollutant from aqualculture facilities have been, thus far, accumulated on the coastal sea around Tongyeong-Keoje-Gosung, considering there was no significant inflow of sewage and industrial wastewater into this coastal sea. A COD, T-N, and T-P level of surface seawater, on the whole trended to increase as moving the coastal sea around Mokpo-Wando toward the east(Gyeongnam Namhae coastal seas). A COD level appeared to be the second grade of coastal water quality over the entire year throughout all Namhae coastal seas A T-N level exceeded the third grade of coastal water quality throughout all Namhae coastal seas except the coastal sea around Mokpo-Wando. Especially, a T-N level exceeded as many as three and six times over the third grade of coastal water quality in the coastal sea around Tongyeong-Keoje-Gosung and Masan-Jinhae, respectively. A T-P level appeared to be the second grade of coastal water quality in the coastal sea around Mokpo-Wando and the third grade of coastal water quality in the coastal sea around Yosu-Narnhae and Tongyeong-Keoje-Gosung, while it exceeded as many as two times over the third grade of coastal water quality. A degree of eutrophication of the surface seawater was 1.5 in the coastal sea around Mokpo-Wando and 11.9 In the coastal sea around Tongyeong-Keoje-Gosung, gradually increasing as moving toward the east(Gyeongnam Narnhae coastal seas). It sharply increased to 146.1 in the coastal sea around Masan-Jinhae. Because the degree of eutrophication throughout all Namhae coastal seas exceeded 1, a red tide organism could pose a possibility of proliferation at any place of Namhae coastal seas if other requirements were satisfied. It indicates that a red tide may move to another place once a red tide breaks out at a place of Namhae coastal seas.

  • PDF

Flocculating Activity and Dehydration Efficiency of Biopolymer Flocculant Biopol32 in Industrial Wastewater Treatment (생물고분자응집제 Biopol32의 산업폐수에 대한 응집활성 및 탈수효과)

  • Lee, Myoung Eun;Oh, Nara;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.362-368
    • /
    • 2019
  • For the practical application and development of biopolymer flocculant Biopol32 produced by Pseudomonas sp. GP32, its flocculation effect on wastewater from food processing, slaughter houses, and the dyeing industry was investigated. In the food processing wastewater, Biopol32 led to a chemical oxygen demand (COD) reduction rate of 70% and a suspended solid (SS) removal rate of 49% at pH 6.0. In the slaughter house wastewater at pH 4.0, a COD reduction rate of 61% and SS removal rate of 91% were observed, and in the dyeing wastewater, the rates were 72% and 92%, respectively, at pH 5.0. The size of floc formed during the flocculation process was 10 mm at a final concentration of 20 ppm, and the dehydration efficiency was 62%. In both the bioflocculant Biopol32 group and a PAA synthetic flocculant group, optimal flocculant concentration that yielded the best overall dehydration efficiency was 20 ppm, and, at this concentration, the shortest filtration time to reach the natural critical moisture content of 78.1% was attained.

Anaerobic Mono- and Co-digestion of Primary Sludge, Secondary Sludge and Food Waste: Biogas Production at Different Mixture Ratio (일차슬러지, 이차슬러지 및 음식물류폐기물의 단독 및 통합 혐기성 소화: 혼합비율 차이에 따른 바이오가스 생산량 조사)

  • Seonmin Kang;Minjae Kim;Juyun Lee;Sungyun Jung;Taeyoon Lee;Kwang Hee Nam;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.1
    • /
    • pp.47-55
    • /
    • 2023
  • This study evaluated the biochemical methane potential (BMP) of primary sludge, secondary sludge, and food waste in batch anaerobic mono-digestion tests, and investigated the effects of mixture ratio of those organic wastes on methane yield and production rate in batch anaerobic co-digestion tests, that were designed based on a simplex mixture design method. The BMP of primary sludge, secondary sludge and food waste were determined as 234.2, 172.7, and 379.1 mL CH4/g COD, respectively. The relationships between the mixing ratio of those organic wastes with methane yield and methane production rate were successfully expressed in special cubic models. Both methane yield and methane production rate were estimated as higher when the mixture ratio of food waste was higher. At a mixing ratio of 0.5 and 0.5 for primary sludge and food waste, the methane yield of 297.9 mL CH4/g COD was expected; this was 19.4% higher than that obtained at a mixing ratio of 0.3333, 0.3333 and 0.3333 for primary sludge, secondary sludge, and food waste (249.5 mL CH4/g COD). These findings could be useful when designing field-scale anaerobic digersters for mono- and co-digestion of sewage sludges and food waste.

Sanitary Characteristics of Seawater and Sediments in Tongyeong Harbor (통영항의 해수 및 저질의 위생학적 특성)

  • Park, Jun-Yong;Kim, hhhYeong-In;Bae, Ki-Sung;Oh, Kwang-Soo;Choi, Jong-Duck
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.367-375
    • /
    • 2010
  • The bacteriological and physiochemical analysis of sea water and sediments in Tongyeong harbor was conducted to evaluate sanitary conditions. The samples were collected at 8 stations established once a month from June, 2008 to May, 2009. During the study period, the range of temperature was from 6.7 to $25.2^{\circ}C$, transparency ranged from 1.2 to 2.6 m, chemical oxygen demand ranged from 1.90 to 2.92 mg/L, dissolved oxygen ranged from 6.2 to 10.5 mg/L, dissolved nitrogen ranged from 0.052 to 0.098 mg/L, phosphate ranged from 0.044 to 0.065 mg/L, respectively. Seafood, if eaten raw, carries the risk of food poisoning. Seafood poisoning is often cause by pathogenic microorganism originating from fecal contamination, such as Salmonella sp., Shigella sp. and norovirus. Fecal coliforms are an important indicator of fecal contamination. Therefore, data on fecal coliform are very important for evaluating the safety of fisheries in coastal areas. So, we investigated the sanitary indicate bacteria. The coliform group and fecal coliform MPN's of sea water in Tongyeong harbor were ranged from < 1.8~22,000/100 mL (GM 164.9 MPN/100 mL) and < 1.8~7,900 MPN/100 mL (GM 33.7 MPN/100 mL), respectively. Total coliform were detected 97.0% in 96 of samples and 68.9% of total coliforms were fecal coliforms. These results similar to another seawater detection ratio of total coloforms and fecal coliforms. The Vibrios was isolated and identified with VITEK system. Four hundred eighty strains that were obtained from sea water samples in Tongyeong harbor Detection ratio Vibrio alginolyticus, 34.2%, Vibrio parahaemolyticus, 13.8%, Vibrio vulnificus 10.0%, and V. mimicus 12.5% respectively. Vibrio cholerae O1, was not detected. During the study period, the ranges of water content, ignition loss, COD, and acid volatile sulfates in sediments in Tongyeoung harbor were 41.0~57.4%, 7.8~10.5%, 6.51~9.30 mg/g, 0.04~0.09 mg/g, respectively. Heavy metals in sediment of Tongyeoung harbor were Cd, $0.10{\pm}0.05$; Cu, $4.79{\pm}8.20$; As, $1.95{\pm}0.17$; Hg, $0.10{\pm}0.07$; $Cr^{6+}$, $0.34{\pm}0.12$; Zn, $125.33{\pm}16.40$; Ni, $16.43{\pm}1.93$ mg/kg.

Assessment of Technology Based Industrial Wastewater Effluent Limitation and Standards for the Domestic Industry Category (III) : The Evaluation of TBEL's Applicability for Domestic Industry Categories (Case-study : Pulp, Paper, Paperboard Category) (처리기술에 근거한 산업폐수 배출허용기준 국내 적용성 연구(III) : 국내 적용방안 및 사례 연구 (펄프·종이 및 종이제품 제조시설))

  • Kim, Kyeongjin;Son, Daehee;Heo, Jin;Kim, Kwangin;Kim, Sanghun;Kim, Jaehun;Yeom, Icktae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.377-386
    • /
    • 2010
  • Introduction of TBELs into Korean environmental regulatory system for wastewater may require very careful considerations and appropriate modifications of the TBELs applied in US. The Korean regulations for wastewater are based on uniform regulatory criteria for wastewater effluent discharge and are quite different from the individual permit system in US. In addition, the toxic pollutants regulated in Korea are much less than those in US. Therefore, the effects of TBELs application on the pollutants reduction and the economic feasibility should be carefully assessed for different categories of wastewater sources. In this study, the applicability of TBELs for the industrial categories of Korea was discussed. The TBELs were derived for a sample category, the pulp paper paperboard manufacture, based on the previously reported analytical data from 52 facilities of the domestic pulp paper paperboard manufacture in Korea. It was suggested that the BAT effluent limitations were BOD 30 mg/L, $COD_{Mn}$ 40 mg/L, SS 40 mg/L, T-N 30 mg/L and T-P 4 mg/L and that the allowable effluent loads were $0.31{\sim}1.75kgCOD_{Mn}/ton$-products. Due to the limitation of insufficient data, there were difficult to obtain the important factors to derive more systematic and accurate limitation standards for the pollutants such as the 'Long Term Average (LTA)', the 'Product Normalized Discharge Flow (PNDF)', and the 'Variability Factor (VF)'. However, as the first trial of TBELs determination based on the all available analytical data reported, the procedure and the outcome of the study may provide valuable insight on application of TBELs in Korea.

Pulp Bleaching Effect and Ionization Rate of Chlorine Dioxide by Additive and Various pH Conditions (II) (pH와 첨가제에 의한 이산화염소의 분해율 및 펄프 표백효과(2)-첨가제가 chlorate 생성량의 감소와 펄프 표백 효과에 미치는 영향)

  • 윤병호;왕립군
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.4
    • /
    • pp.49-57
    • /
    • 1999
  • In CLO2 delignification and bleaching process, formation of chlorate corresponds to a loss of 20-36% of the original CKO2 charge. Because chlorate is inactive and harmful to environmental, it will be of benefit to find methods that can reduce the formation of chlorate during chlorine dioxide bleaching. Chlorate is mainly formed by the reaction HCIO +ClO2 $\longrightarrow$H+ + Cl_ +ClO3-2 On the other hand, AOX in chlorine dioxide bleacing is formed also due to the in-situ produced hypochlorous acid. THus both AOX and chlorate could be reduced by addition of hypochlorous acid. Some paper son the reduction of AOX by additives appeared , but systematic data on chlorate reduction as well as pulp and effluent properties are not available. THus this paper of focused on the effects on the reduction of chlorate and chlorine dioxide bleachability. The additives, fulfamic a챵, AMSO, hydrogen peroxide, oxalic acid were found to eliminate chlorine selectively in chlorine and chlorine dioxide mixture.However, when they were added to bleaching process, sulfamic acid and DMSO showed significant reduction of chlorate formation but hydrogen peroxide and oxalic aicd did not, and significant amount ofhydrogen peroxide was found resided in the bleaching effluent , In addition, sulfamic acid and DMSO decreased the bleaching end ph values while hydrogen peroxide and oxalic acid did not, which also indicated that hydrogen peroxide and oxalic acid were ineffective. The difference might be ascribed to the competitives of hypochlorous acid with lignin, chlorite (CKO2) and additives. Sulfamic acid and DMSO showed better pulpbrightness development but less alkaline extraction efficiency than hydrogen peroxide , oxalic acid and control, which means that insitu hypochlorous acid contributes to the formation of new chromophore structures that can be easily eliminated by alkaline extraction. DMSO decreased the delignification ability of chlorine dioxide due to the elimination of hypochlorous acid, but sfulfamic acid did to because the chlroinated sulfamic acid had stable bleachability. In addition, sulfamic acid, and SMSO shwed decreased color and COD of bleaching effluents, hydrogen peroxide decreased effluent color but not COD content, and oxalic acid had no statistically significant effects. No significant decreases of pulp viocosity were found except for hydrogen peroxide. Based on our results , we suggest that the effectiveness of hydrogen peroxide on the reduction of AOX in literature might be explained by other mechanisms not due to the elimination of hypochlorous acid , but to the direct decomposition of AOX by hydrogen peroxide.

  • PDF

Rinsing Water Reduction in the Food (Kimchi) Industry (식품(김치)산업에서 세척수 사용량 절감에 관한 연구)

  • Yi, Hosang;Hyoung, Hoon;Choo, Kwang-Ho;Lee, Chung-Hak
    • Clean Technology
    • /
    • v.5 no.1
    • /
    • pp.78-85
    • /
    • 1999
  • In the Kimchi manufacturing industry that has recently been on its greatest growth, the rinsing process for salt-pickled Chinese cabbage in a brining step generates a vast amount of rinsing wastewater containing salts, colloids, and organics released from the raw material. In this study, the experimental method was developed to optimize the rinsing water consumption and thus to minimize the rinsing wastewater generation. The continuous counter-current rinsing basin in the actual plant was simulated through the lab-scale three batch-wise rinsing tanks. Rinsing efficiencies for the brined cabbage from the same brining tank were almost in the same level, whereas those varied substantially from source to source in the raw Chinese cabbage provided. When rinsing water used were decreased from 3.3 L/head to 2.7 L/head, no significant change was observed with respect to COD, turbidity, conductivity, $Na^+$, and $Cl^-$ concentrations in the extracted solution of the rinsed cabbage. However, the quality of the extracted solution was badly deteriorated as the amount of rinsing water used dropped down to below 2.7 L/head. The reduction of rinsing water up to 18% was proved to be possible without any negative effect on the quality of the product, Kimchi.

  • PDF