• Title/Summary/Keyword: Cochlodinium Polykrikoides

Search Result 176, Processing Time 0.027 seconds

Marine Environmental Characteristics of Goheung Coastal Waters during Cochlodinium polykrikoides Blooms (Cochlodinium polykrikoides 적조 발생시의 한국 남해안 고흥 연안의 해양환경 특징)

  • Lee, Moon Ock;Kim, Byeong Kuk;Kim, Jong Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.166-178
    • /
    • 2015
  • We investigated marine environmental characteristics of Goheung coastal areas in August where is known to be the first outbreak site of Cochlodinium polykrikoides (hereafter C. polykrikoides) blooms, based on the oceanographic data observed from 1993 to 2013 around the Korean southern coastal waters including Eastern China Sea by National Fisheries Research and Development Institute (NFRDI). The data of NOAA/NGSST satellite images as well as numerical simulation results by Seo et al. [2013] were also used for analysis. Water temperatures at the surface and bottom layers in Goheung coast, i.e. Narodo, were $25.0^{\circ}C$ and $23.7^{\circ}C$ so that they were higher than $23.8^{\circ}C$ and $19.4^{\circ}C$ in Geoje coast where is a reference site, respectively. In addition, salinities at the surface and bottom layers in Goheung coast were 31.78 psu and 31.98 psu so that they were a little higher than 31.54 psu at the surface but a little lower than 32.79 psu at the bottom in Geoje coast, respectively. That is, the differences in water temperature or salinity between the surface and bottom layers in Goheung coast in August were not large compared to Geoje coast. This suggests that stratification in Goheung coast in August is fairly weak or may not be established. In addition, the concentrations of DIN and DIP at the surface layer were 0.068 mg/L ($4.86{\mu}M$) and 0.015 mg/L ($5.14{\mu}M$) in Goheung coast while 0.072 mg/L ($5.14{\mu}M$) and 0.01 mg/L ($0.32{\mu}M$) in Geoje coast, so they did not indicate a meaningful difference. On the other hand, when C. polykrikoides blooms, water temperature and salinity in August at the station 317-22 ($31.5^{\circ}N$, $124^{\circ}E$) of the East China Sea, where is near the mouth of Yangtze River, were $27.8^{\circ}C$ and 31.61 psu, respectively. Thus, water temperature was much higher whereas salinity was almost similar compared to Goheung coast. Furthermore, concentrations of $NO_3-N$ and $PO_4-P$ in the East China Sea in August were remarkably high compared to Goheung coast. When C. polykrikoides blooms, according to not only the image data of satellites NOAA/NGSST but also numerical experiment results by Seo et al.[2013], the freshwater out of Yangtze River was judged to clearly affect the Korean southern coastal waters. Therefore, the supply of nutrients in terms of Yangtze River may greatly contribute to the outbreak of C. polykrikoides blooms in Goheung coast in summer.

Effects of Yellow Clay on the Production of Volatile Fatty Acids during the Anaerobic Decomposition of the Red Tide Dinoflagellate Cochlodinium polykrikoides in Marine Sediments (해양퇴적층에서 적조생물(Cochlodinium polykrikoides)의 혐기성 분해과정 중 황토가 휘발성 지방산 생성에 미치는 영향)

  • Park, Young-Tae;Lee, Chang-Kyu;Park, Tae-Gyu;Lee, Yoon;Bae, Heon-Meen
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.5
    • /
    • pp.472-479
    • /
    • 2012
  • The formation of volatile fatty acids(VFAs) and changes in pH, oxidation and reduction potential(Eh) and acid volatile sulfide(AVS) with the addition of yellow clay were investigated using microcosm systems to examine the effects of yellow clay dispersion on the anaerobic decomposition of Cochlodinium polykrikoides in marine sediments. The acetate concentration reached a maximum by day 4 and was 1.2-1.8 fold less in the sample treated with yellow clay compared to the untreated sample (224-270 vs. 333 uM). The formate concentration reached a maximum by day 1 and was 1.3-2.8 fold less in the sample treated with yellow clay compared to the untreated sample (202-439 vs. 563 uM). The propionate concentration reached a maximum by day 2 and was 1.5-1.8 fold less in the sample treated with yellow clay compared to the untreated sample (32.6 vs. 57.2 uM). After the amounts of acetate, formate and propionate peaked the levels dropped dramatically due to the utilization by sulfate reducing bacteria. The Eh of the samples treated with yellow clay was similar to the untreated sample on day 0 but was higher in the sample treated with yellow clay(140-206 mV) from days 4 to 17. AVS started to form on day 3 and this was sustained until day 6, and 1.2-2.2 fold less was produced in the sample treated with yellow clay compared to the untreated sample (40.2-69.3 vs. 83.2-93.8 mg/L). Accordingly, during the anaerobic decomposition of C. polykrikoides in marine sediments, yellow clay dispersal seems to suppress the reduction state of Eh and the formation of volatile fatty acids(acetate, formate and propionate) used as an energy source by sulfate reducing bacteria, indicating that this process controls the production of hydrogen sulfide that negatively affects marine organisms and the marine sediment environment.

Dependence of Sub-Cellular Activities of the Blooming and Harmful Dinoflagellate Cochlodinium Polykrikoides on Temperature (수온에 따른 유해성 Cochlodinium polykrikoides 적조생물의 세포생리 변화)

  • Cho, Eun-Seob
    • Journal of Life Science
    • /
    • v.18 no.9
    • /
    • pp.1194-1201
    • /
    • 2008
  • Water temperature-dependent fluctuations of biochemical and molecular activities in the harmful dinoflagellate, Cochlodinium polykrikoides were studied. In terms of genomic DNA concentration, a similar value of 0.6 was observed at $12^{\circ}C$ and $15^{\circ}C$. However, DNA significantly increased beyond $18^{\circ}C$ (p<0.05), to a maximum of 1.8 at $24^{\circ}C$. DNA concentration significantly decreased to 0.6. The concentrations of RNA and total protein were likely at their highest values of 1.7 and 0.07 ${\mu}g$ $ml^{-1}$ at $24^{\circ}C$, respectively. RNA and total protein concentrations began to increase at $15^{\circ}C$. Oxygen availability between lower and higher temperatures was significantly different and increased from $18^{\circ}C$ according to light intensity, regardless of wavelengths (p<0.05). At $24^{\circ}C$, the highest value of the maximum electron transport rate ($ETR_{max}$), ranging from 537.9 (Ch 1) to 602.5 ${\mu}mol$ electrons $g^{-1}$ Chl ${\alpha}s^{-1}$ (Ch 4), was also apparent. Nitrate reductase (NR) and ATPase activities were at their highest values of 0.11 ${\mu}mol$ $NO_{2}^{-}$ ${\mu}g^{-1}$ Chl ${\alpha}h^{-1}$ and 0.78 pmol 100 $mg^{-1}$ at $24^{\circ}C$, respectively. In an analysis of CHN, the concentration of C and N also significantly increased (p<0.05). Most of the measurements for the cellular activities at $27^{\circ}C$, however, were less than at $24^{\circ}C$. These results suggest that the sub-cellular activities of C. polykrikoides are sensitive to changes in water temperature. It may be desirable to estimate at $18^{\circ}C$ the initiation of the massive blooming development of C. polykrikoides. In nature, it will be very difficult to maintain the massive blooms beyond $24^{\circ}C$ because of a possibly significant decrease in molecular activity of C. polykrikoides.

Axenic Culture Production and Growth of a Dinoflagellate, Cochlodinium polykrikoides (적조 와편모조류, Cochlodinium polykrikoides의 순수분리 및 성장)

  • SEO Pil-Soo;LEE Sang-Jun;Kim Yoon;LEE Jeong-Ho;KIM Hak-Gyoon;LEE Jae-Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.71-76
    • /
    • 1998
  • To know the antibiotic specificity of a Dinoflagellate, Cochlodinium polykrikoides, we investigated the survival time of C. polykrikoides against several concentrations of antibiotics and judged the selective specificity of antibiotics based on the $LT_50$ ($50\%$ of lethal time). The result showed that C. polykrikoides was sensitive to tetracycline and chloramphenicol, and resistant to polymixin-B, ampicillin, penicillin-G, dihydrostreptomycin, and neomycin. In the case of sensitive antibiotics to C. polykrikoides, tetracycline and chloramphenicol, the safety concentrations of both antibiotics were determined and the antibiotic specificity based or the plotted survival curve was analyzed. Before antibiotic treatment, we tested the antibiotic susceptibility of the contaminated bacterial population in tile culture of C. polykrikoides, and decided the proper kinds of antibiotics and concentrations before percoll-centrifugation. By percoll-centrifugation, we reduced bacteria, removed fungi, collected the algal pellet, and made axonic culture by antibiotic cascade procedure based on the result of antibiotic susceptibility test. We observed that axonic C. polykrikoides culture entered the logarthmic phase of growth when cell density was over 740 cells/ml and propagated to 5,800 cells/ml maximally. Divisions per day, k value of C. polykrikoides represented a good index for growth at the low density of cells. There was a highest k value shift before reaching to the logarithmic phase. We suggested that the preceeding highest k value shift stage is a good indicator for accurate broadcasting for red. tide blooming in the field, and the stage is also a good time for controlling red tide blooming in the filed, either.

  • PDF

A Comparative Study on Outbreak Scale of Cochlodinium polykrikoides Blooms (Cochlodinium polykrikoides 적조발생규모에 대한 비교연구)

  • Kang, Yang-Soon;Park, Young-Tae;Lim, Weol-Ae;Cho, Eun-Seob;Lee, Chang-Kyu;Kang, Young-Shil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.4
    • /
    • pp.229-239
    • /
    • 2009
  • To understand major factors that affected on distinct Cochlodinium bloom scale in Korean coasts in 2007 and 2008, oceanographic and meteorological characteristics during Cochlodinium bloom period were compared. The main reason for large scale blooms in 2007, covering both southern coast and eastern coast with about 10 million US dollars fish kills, was attributed to sufficient nutrient supply by heavy rainfall, upwelling in the coast arising from irregular wind shift, weak thermocline and low grazing pressure by zooplanktons during Cochlodimum bloom development period. On the contrary, small scale blooms in 2008 covering only inshore areas of southern coast without fish kills was attributed to the low nutrient level in coastal areas by long persistent drought and strong influence of oligotrophic offshore water onto inshore and high grazing pressure by extra ordinarily abundant zooplanktons during Cochlodinium development period. Conclusively, it was estimated that nutrient level, strength of offshore water and feeding pressure might play a significant role in the difference of bloom scale between the two years.

Screening of Seaweed Extracts for Algicidal Substances Using a Photosensitization Effect (해조류 추출물로부터의 Photosensitizing 효과를 지니는 항 적조물질 탐색)

  • Jin, Hyung-Joo;Jin, Deuk-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.3
    • /
    • pp.122-127
    • /
    • 2007
  • Photosensitized extracts of 28 seaweed species were tested in vitro to examine the variation in their algicidal activities against the toxic microalga Cochlodinium polykrikoides. When both seaweed extracts and microalgae were exposed to UV and visible light, methanol extracts of Porphyra yezoensis showed 5.7- and 4.4-fold increasesin light-dependent algicidal activity, respectively. When only seaweed extracts were exposed to both UV (365 nm) and visible light (white lamp) at the same time, methanol extracts of Enteromorpha linza and Carpopeltis affinis showed 3.3- and 3.4-fold increases in algicidal activity, respectively. When UV-photosensitized extracts were left in the dark, the algicidal activity of Ecklonia cava increased 13-fold after 5 h. When visible light-photosensitized extracts were left in the dark, the algicidal activity of Monostroma nitidum increased by 3.3-fold in 1 h.

Ichthyotoxicity of a harmful dinoflagellate Cochlodinium polykrikoides: Aspect of biochemical and hematological responses of fish exposed to Algal blooms

  • Kim, Chang-Sook;Bae, Heon-Meen;Cho, Yong-Chul
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.10a
    • /
    • pp.141-142
    • /
    • 2000
  • To elucidate the ichthyotoxic mechanisms of a harmful dinoflagellate Cochlodinium polykrikoides, biochemical and hematological responses of fish exposed to blooms were investigated. Particularly, based on our finding that oxidative damages of gill were associated with fish mortality, dysfunction of ion-transporting enzymes and secretion of gill mucus of fish exposed to this bloom species were examined. (omitted)

  • PDF