• Title/Summary/Keyword: Cobalt-rich manganese crust

Search Result 3, Processing Time 0.016 seconds

A Technical and Economic Evaluation of Cobalt-rich Manganese Crusts (심해저 망간각 개발의 경제성 평가)

  • Park, Se-Hun;Yang, Hee-Cheol
    • Ocean and Polar Research
    • /
    • v.31 no.2
    • /
    • pp.167-176
    • /
    • 2009
  • Cobalt-rich manganese crusts on seamounts have received an increasing amount of attention as future resources for Co, Ni, Cu, and Mn. A dearth of detailed information regarding the relevant distribution characteristics, mining technologies, and ore processing technologies, however, has precluded potential evaluations of the technical and economic advantages of these crusts. In the past 4 years, Korea has undertaken a survey of the cobalt-rich manganese crusts in and around the Magellan Seamount and Mid-Pacific Mountains. This paper introduces the preliminary feasibility study of the distribution features and R&D results centered around the development of the cobalt-rich manganese crusts. The evaluation model was developed by modifying the model for the manganese nodules. In addition to considering the geological and geophysical differences between the manganese nodules and the cobalt-rich manganese crusts, an ore dressing subsystem was installed in the model. The mining subsystem is composed of a self-propelled collector--a pipeline with submersible hydraulic pumps for crust lifting. The smelting and chlorine leach method was selected for metallurgical processing. The production scales were established at 2,500t/y of cobalt metal. The production of three metals--cobalt, nickel, and copper--was considered in terms of metallurgical processing. The economic feasibility analyses demonstrated that the payback period was 11.4 years, the NPV was 36M$, and the IRR was 9.6% with the economic factors in the case of a cobalt price of US$ 25/lb. It was also demonstrated in this study that the payback period was 8.6 years, the NPV was 154M$, and the IRR was 14.0% in the case of a cobalt price of US$ 30/lb. This indicates that the approach under consideration appears to offer greater potential given the predicted metal prices.

Future Deep Ocean Resources and the Technologies for Commercial Development

  • Yamazaki, Tetsuo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.14-20
    • /
    • 2006
  • During the 11 year period of 1995-2005, there was about a 40% increase in the world copper demand mainly because of the Asian economic growth. In the increase, about a half was consumed by China. Most of the China's copper demand increase has been taken place over the final 5-6 years of that period. The growth is expected to continue for several years, and in 10 years or sooner the same situation is expected for India. Copper is the third metal in global demand, but its little abundance in the Earth's crust is not well recognized. From the production rate and the abundance, a copper shortage, or crisis, has a high probability than the other metals. Deep ocean mineral resources such as manganese nodules in the Clarion-Clipperton Fracture Zones, Kuroko-type massive seafloor sulfides (SMS), and cobalt-rich manganese crusts in the EEZ and the high sea areas have big potentials for the future sources. We need to re-evaluate their potentials as copper resources and other metals to realize their developments. The same situation is under progress in the hydro-carbon markets. Methane hydrates that are classified into non-conventional hydro-carbon resources have an important role as the future sources, too.

  • PDF

Characterizing Geomorphological Properties of Western Pacific Seamounts for Cobalt-rich Ferromanganese Crust Resource Assessment (서태평양 해저산의 망간각 자원평가를 위한 해저지형 특성 분석)

  • Joo, Jongmin;Kim, Jonguk;Ko, Youngtak;Kim, Seung-Sep;Son, Juwon;Pak, Sang Joon;Ham, Dong-Jin;Son, Seung Kyu
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.121-134
    • /
    • 2016
  • We characterize the spatial distribution of Cobalt-rich ferromanganese crusts covering the summit and slopes of a seamount in the western Pacific, using acoustic backscatter from multibeam echo sounders (MBES) and seafloor video observation. Based on multibeam bathymetric data, we identify that ~70% of the summit area of this flattopped seamount has slope gradients less than $5^{\circ}$. The histogram of the backscatter intensity data shows a bi-modal distribution, indicating significant variations in seabed hardness. On the one hand, visual inspection of the seafloor using deep-sea camera data exhibits that the steep slope areas with high backscatter are mainly covered by manganese crusts. On the other hand, the visual analyses for the summit reveal that the summit areas with relatively low backscatter are covered by sediments. The other summit areas, however, exhibit high acoustic reflectivity due to coexistence of manganese crusts and sediments. Comparison between seafloor video images and acoustic backscatter intensity suggests that the central summit has relatively flat topography and low backscatter intensity resulting from unconsolidated sediments. In addition, the rim of the summit and the slopes are of high acoustic reflectivity because of manganese crusts and/or bedrock outcrops with little sediments. Therefore, we find a strong correlation between the acoustic backscatter data acquired from sea-surface multibeam survey and the spatial distribution of sediments and manganese crusts. We propose that analyzing acoustic backscatter can be one of practical methods to select optimal minable areas of the ferromanganese crusts from seamounts for future mining.