• Title/Summary/Keyword: Cobalt nanopowder

Search Result 3, Processing Time 0.016 seconds

The Fabrication of Cobalt Nanopowder by Sonochemical Polyol Synthesis of Cobalt Hydroxide and Magnetic Separation Method (수산화코발트의 초음파 폴리올 합성과 자성 선별법을 이용한 코발트 나노 분말의 제조)

  • Byun, Jong Min;Choi, Myoung Hwan;Shim, Chang Min;Kim, Ji Young;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.39-45
    • /
    • 2015
  • In this study, cobalt nanopowder is fabricated by sonochemical polyol synthesis and magnetic separation method. First, sonochemical polyol synthesis is carried out at $220^{\circ}C$ for up to 120 minutes in diethylene glycol ($C_4H_{10}O_3$). As a result, when sonochemical polyol synthesis is performed for 50 minutes, most of the cobalt precursor ($Co(OH)_2$) is reduced to spherical cobalt nanopowder of approximately 100 nm. In particular, aggregation and growth of cobalt particles are effectively suppressed as compared to common polyol synthesis. Furthermore, in order to obtain finer cobalt nanopowder, magnetic separation method using magnetic property of cobalt is introduced at an early reduction stage of sonochemical polyol synthesis when cobalt and cobalt precursor coexist. Finally, spherical cobalt nanopowder having an average particle size of 22 nm is successfully separated.

Fabrication of Flake-like LiCoO2 Nanopowders using Electrospinning (전기 방사법을 이용한 플레이크형 LiCoO2 나노 분말의 제조)

  • Koo, Bon-Ryul;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.108-113
    • /
    • 2014
  • Flake-like $LiCoO_2$ nanopowders were fabricated using electrospinning. To investigate their formation mechanism, field-emssion scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were carried out. Among various parameters of electrospinning, we controlled the molar concentration of the precursor and the PVP polymer. When the molar concentration of lithium and cobalt was 0.45 M, the morphology of $LiCoO_2$ nanopowders was irregular and round. For 1.27 M molar concentration, the $LiCoO_2$ nanopowders formed with flake-like morphology. For the PVP polymer, the molar concentration was set to 0.011 mM, 0.026 mM, and 0.043 mM. Irregular $LiCoO_2$ nanopowders were formed at low concentration (0.011 mM), while flake-like $LiCoO_2$ were formed at high concentration (0.026 mM and 0.043 mM). Thus, optimized molar concentration of the precursor and the PVP polymer may be related to the successful formation of flake-like $LiCoO_2$ nanopowders. As a results, the synthesized $LiCoO_2$ nanopowder can be used as the electrode material of Li-ion batteries.

Synthesis of Carbon Coated Nickel Cobalt Sulfide Yolk-shell Microsphere and Their Application as Anode Materials for Sodium Ion Batteries (카본 코팅된 니켈-코발트 황화물의 요크쉘 입자 제조 및 소듐 이온 배터리의 음극 소재 적용)

  • Hyo Yeong Seo;Gi Dae Park
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.387-393
    • /
    • 2023
  • Transition metal chalcogenides are promising cathode materials for next-generation battery systems, particularly sodium-ion batteries. Ni3Co6S8-pitch-derived carbon composite microspheres with a yolk-shell structure (Ni3Co6S8@C-YS) were synthesized through a three-step process: spray pyrolysis, pitch coating, and post-heat treatment process. Ni3Co6S8@C-YS exhibited an impressive reversible capacity of 525.2 mA h g-1 at a current density of 0.5 A g-1 over 50 cycles when employed as an anode material for sodium-ion batteries. However, Ni3Co6S8 yolk shell nanopowder (Ni3Co6S8-YS) without pitch-derived carbon demonstrated a continuous decrease in capacity during charging and discharging. The superior sodium-ion storage properties of Ni3Co6S8@C-YS were attributed to the pitch-derived carbon, which effectively adjusted the size and distribution of nanocrystals. The carbon-coated yolk-shell microspheres proposed here hold potential for various metal chalcogenide compounds and can be applied to various fields, including the energy storage field.