• Title/Summary/Keyword: Cobalt Complexes

Search Result 137, Processing Time 0.025 seconds

The Effects of Pressure, Temperature and Solvent Composition on Solvolysis of trans-[Co(N-eten)$_2Cl_2]^+$ in Water-t-butyl Alcohol Mixture

  • Park Yu Chul;Cho Young Je
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.1-4
    • /
    • 1988
  • Rates of solvolysis of trans-[Co$(N-eten)_2Cl_2$]$^+$ have been investigated using spectrophotometric method at various pressures and temperatures in the mixtures of water with the t-butyl alcohol which possesses a high structure inducing capacity in water. The values of ${\Delta}V^{\neq}$ obtained from pressure effect on the rate constants were 2.55∼ 5.83 $cm^3mol^{-1}$. These values were discussed in terms of dissociative mechanism. Extrema found in the variation of ${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$ with solvent composition correlated with extrema in the variation of the physical properties of the mixtures. The logarithms of rate constants correlated linearly with both Grunwald-Winstein parameter and the reciprocal of dielectric constant ($Ds^{-1}$). The gradient, m of Grunwald-Winstein plot for the trans-[Co$(N-eten)_2Cl_2$]$^+$ was 0.09, which is significantly lower than those for the other cobalt (Ⅲ)-dichloro complexes. It was suggested that the reaction is an Id mechanism with long extension of Co-Cl bond in the transition state, as found for the C-Cl bond in the transition state for the solvolysis of t-butyl chloride.

Electrochemical Propertics and Oxidation Reaction of Hydrazobenzene by Oxygen Adducted Tetradentate Schiff Base Cobalt(II)(3MeOSED) Activated Catalyst in Aprotic Solvents(I) (비수용매에서 산소첨가된 네자리 Schiff Base Cobalt(II)(3MeOSED) 활성촉매에 의한 Hydrazobenzene의 산화반응과 전기화학적 성질 (제 1 보))

  • Ki-Hyung Chjo;Yong-Kook Choi;Sang-Bock Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.261-272
    • /
    • 1992
  • Tetradentate Schiff base Cobalt(II)(3MeOSED)$(H_2O)_2$ complexe was synthesized and allowed to react with dry oxygen to form oxygen adducts of Cobalt(III) complexes such as ${\mu}$-peroxo type [Co(III)(3MeOSED)(DMF)]$_2O_2$ and [Co(III)(3MeOSED)(DMSO)]$_2O_2$in DMF and DMSO or superoxo type [Co(III)(3MeOSED)(Py)]$O_2$ in pyridine. The oxygen adducted complex was investigated by cyclic voltammetry and DPP method with glassy carbon electrode in 0.1M TEAP-DMF (-DMSO,-Py) as supporting electrolyte solution. As a result the reduction reaction process occurred to four steps including prewave Of $O_2^-$in 1 : 1 oxygen adducted superoxo type [Co(III)(3MeOSED)(Py)]$O_2$complex and three steps not including prewave of $O_2^-$ in 1 : 2 oxygen adducted ${\mu}$-peroxo type [Co(III)-(3MeOSED)(DMF)]$_2O_2$ and [Co(III)(3MeOSED)(DMSO)]$_2O_2$. A superoxo type [Co(III)(3MeOSED)(L)]$O_2\;(L: CH_3OH)$ was generated with oxygen in methanol. Selectively oxidized hydrazobenzene $(H_2AB)$ to trans-azobenzene(t-AB) and the rate constant k for oxidation reaction of the following equation is $(2.96 {\pm} 0.2)$${\times}$ $10^{-1}$M/sec. $H_2AB$ + Co (II)(3MeOSED)$(L_2)+O_2\;{\rightleftarrow^K}$ [Co(III)(3MeOSED)(L)]$O_2{\cdot}H_2AB{\longrightarrow^K}$ Co(II(3MeOSED)$(L)_2$+t-AB+$H_2O_2 $.

  • PDF

Accelerating Effects of Ultrasonic Irradiation on Reaction Rates for the Asymmetric Ring Opening Reaction of Epoxides (초음파 조사에 의한 에폭사이드 비대칭 고리열림 반응의 속도 증진 효과)

  • Lee, Yae Won;Park, Geun Woo;Kim, Geon Joong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.365-370
    • /
    • 2019
  • In this study, effects of the ultrasonic irradiation during the reaction process were investigated for the enantioselective kinetic resolution (EKR) reaction of racemic epoxides in the presence of chiral cobalt salen catalysts, as compared to that of using the conventional mechanical stirring. In order to compare catalytic activities, the chiral cobalt salen complexes having $AlCl_3-$, $BF_3-$ and nitrobenzenesulfonic acid (NBSA) were synthesized and used as catalysts, and then three kinds of the racemic epoxides such as ephichlorohydrine (ECH), epoxy phenoxypropane (EPP) and propylene oxide (PO) were used as reactants. In addition, EKR reactions have been performed using the water and methanol as nucleophiles, respectively. The unique contribution of ultrasonic irradiation as a powerful mixing medium was evaluated in this study to improve the kinetics in comparison to the conventional mechanical agitation during EKR reactions. The reaction time to obtain the highest 99 ee% became shorten more than that of above 60%, when the ultrasonic irradiation was used. This result may be interpreted by the cavitation effect of ultrasound in the solution, generating a powerful shear force for the very violent mixing.

Polymers and Inorganics: A Happy Marriage?

  • Wegner Gerhard;Demir Mustafa M.;Faatz Michael;Gorna Katazyrna;Munoz-Espi Rafael;Guillemet Baptiste;Grohn Franziska
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.95-99
    • /
    • 2007
  • The most recent developments in two areas: (a) synthesis of inorganic particles with control over size and shape by polymer additives, and (b) synthesis of inorganic-polymer hybrid materials by bulk polymerization of blends of monomers with nanosized crystals are reviewed. The precipitations of inorganics, such as zinc oxide or calcium carbonate, in presence and under the control of bishydrophilic block or comb copolymers, are relevant to the field of Biomineralization. The application of surface modified latex particles, used as controlling agents, and the formation of hybrid crystals in which the latex is embedded in otherwise perfect crystals, are discussed. The formation of nano sized spheres of amorphous calcium carbonate, stabilized by surfactant-like polymers, is also discussed. Another method for the preparation of nanosized inorganic functional particles is the controlled pyrolysis of metal salt complexes of poly(acrylic acid), as demonstrated by the syntheses of lithium cobalt oxide and zinc/magnesium oxide. Bulk polymerization of methyl methacrylate blends, with for example, nanosized zinc oxide, revealed that the mechanisms of tree radical polymerization respond to the presence of these particles. The termination by radical-radical interaction and the gel effect are suppressed in favor of degenerative transfer, resulting in a polymer with enhanced thermal stability. The optical properties of the resulting polymer-particle blends are addressed based on the basic discussion of the miscibility of polymers and nanosized particles.

Hydro/solvothermal synthesis, crystal structure, and thermal behaviour of piperazine-templated nickel(II) and cobalt(II) sulfates

  • Kim, Chong-Hyeak;Park, Chan-Jo;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.309-315
    • /
    • 2006
  • Two piperazine-templated metal sulfate complexes, $(C_4N_2H_{12})[Ni(H_2O)_6](SO_4)_2$, I and ($C_4N_2H_{12}$) $[Co(H_2O)_6](SO_4)_2$, II, have been synthesized by hydro/solvothermal reactions and their crystal structures analyzed by single crystal X-ray diffraction methods. Complex I crystallizes in the monoclinic system, $P2_1/n$ space group, a=12.920(3), b=10.616(2), $c=13.303(2){\AA}$, ${\beta}=114.09(1)^{\circ}$, Z=4, $R_1=0.030$ for 3683 reflections; II: monoclinic $P2_1/n$, a=12.906(3), b=10.711(2), $c=13.303(2){\AA}$, ${\beta}=114.10(2)^{\circ}$, Z=4, $R_1=0.032$ for 4010 reflections. The crystal structures of the piperazine-templated metal(II) sulfates demonstrate zero-dimensional compound constituted by diprotonated piperazine cations, metal(II) cations and sulfate anions. The structures of complex I and II are substantially isostructural to that of the previously reported our piperazine-templated copper(II) sulfate complex $(C_4N_2H_{12})[Cu(H_2O)_6](SO_4)_2$. The central metal(II) atoms are coordinated by six water molecules in the octahedral geometry. The crystal structures are stabilized by three-dimensional networks of the $O_{water}-H{\cdots}O_{sulfate}$ and $N_{pip}-H{\cdots}O_{sulfate}$ hydrogen bonds between the water molecules and sulfate anions and protonated piperazine cations. Based on the results of thermal analysis, the thermal decomposition reactions of the complex I was analyzed to have three distinctive stages whereas the complex II proceed through several stages.

Synthesis of Enantiopure Epoxide Compounds Using Dimeric Chiral Salen Catalyst (이량체구조를 갖는 키랄 살렌 촉매를 이용한 고 광학순도의 에폭사이드 화합물 합성)

  • Kim, Geon-Joong;Kim, Seong-Jin;Li, Wenji;Chen, Shu-Wei;Shin, Chang-Kyo;Thakur, Santosh S.
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.647-661
    • /
    • 2005
  • The stereoselective synthesis of chiral terminal epoxide is of immense academic and industrial interest due to their utility as versatile starting materials as well as chiral intermediates. In this review, we investigate the research and development trend in the asymmetric ring opening reactions using cobalt salen catalysts. Hydrolytic kinetic resolution (HKR) technology is the very prominent way to prepare optically pure terminal epoxides among available methods. We have synthesized homogeneous and heterogeneous chiral dinuclear salen complexes and demonstrated their catalytic activity and selectivity for the asymmetric ring opening of terminal epoxides with variety of nucleophiles and for asymmetric cyclization to prepare optically pure terminal epoxides in one step. The resolved ring opened product combined with ring closing in the presence of base and catalyst afforded the enantioriched terminal epoxides in quantitaive yield. Potentially, these catalysts are using on an industrial scale to produce chiral intermediates. The experimental results of HKR technology applied to the synthesis of various chiral compounds are presented in this paper.

Studies on Solvent Extraction and Analytical Application of Metal-dithizone Complexes(I). Separation and Determination of Trace Heavy Metals in Urine (Dithizone 금속착물의 용매추출 및 분석적 응용(제1보). 뇨중 흔적량 중금속 원소의 분리 정량)

  • Jeon, Moon-Kyo;Choi, Jong-Moon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.336-344
    • /
    • 1996
  • The extraction of trace cobalt, copper, nickel, cadmium, lead and zinc in urine samples of organic and alkali metal matrix into chloroform by the complex with a dithizone was studied for graphite furnace AAS determination. Various experimental conditions such as the pretreatment of urine, the pH of sample solution, and dithizone concentration in a solvent were optimized for the effective extraction, and some essential conditions were also studied for the back-extraction and digestion as well. All organic materials in 100 mL urine were destructed by the digestion with conc. $HNO_3$ 30 mL and 30% $H_2O_2$ 50 mL. Here, $H_2O_2$ was added dropwise with each 5.0 mL, serially. Analytes were extracted into 15.0 mL chloroform of 0.1% dithizone from the digested urine at pH 8.0 by shaking for 90 minutes. The pH was adjusted with a commercial buffer solution. Among analytes, cadmium, lead and zinc were back-extracted to 10.00 mL of 0.2 M $HNO_3$ from the solvent for the determination, and after the organic solvent was evaporated, others were dissolved with $HNO_3-H_2O_2$ and diluted to 10.00 mL with a deionized water. Synthetic digested urines were used to obtain optimum conditions and to plot calibration-eurves. Average recoveries of 77 to 109% for each element were obtained in sample solutions in which given amounts of analytes were added, and detection limits were Cd 0.09, Pb 0.59, Zn 0.18, Co 0.24, Cu 1.3 and Ni 1.7 ng/mL, respectively. It was concluded that this method could be applied for the determination of heavy elements in urine samples without any interferences of organic materials and major alkaline elements.

  • PDF