• Title/Summary/Keyword: Cobalt 다층구조

Search Result 3, Processing Time 0.017 seconds

Thermal Stability Improvement of Ni Germanosilicide using Ni-Pd alloy for Nano-scale CMOS Technology (Nano-scale CMOS에 적용하기 위한 Ni-Germanosilicide에서 Ni-Pd 합금을 이용한 Ni-Germanosilicide의 열안정성 향상)

  • Kim, Yong-Jin;Oh, Soon-Young;Agchbayar, Tuya;Yun, Jang-Gn;Lee, Won-Jae;Ji, Hee-Hwan;Han, Kil-Jin;Cho, Yu-Jung;Kim, Yeong-Cheol;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.31-32
    • /
    • 2005
  • Ge 농도가 30%인 SiGe 위에 Ni-Pd 합금을 이용한 새로운 Ni-Germanosilicide의 방법을 제안하여 열안정성 향상에 대해 연구하였다. 새롭게 제안한 Ni-Pd 합금을 이용하여 3 가지 구조 (Ni-Pd, Ni-Pd/TiN, Ni-Pd/Co/TiN) 중 Cobalt 다층구조를 사용한 구조 (Ni-Pd/Co/TiN)가 면저항이 가장 낮고 안정한 silicide 특성을 갖는 것을 나타냈으며, 고온열처리 $700^{\circ}C$, 30분에서도 낮고 안정한 면저항 특성을 유지시켜 열안정성을 개선하였다.

  • PDF

Study of the Perpendicular Magnetic Anisotropy and Exchange Bias in [Pd/Co]5/FeMn Superlattices ([Pd/Co]5/FeMn 초격자 다층 박막구조에서 수직 자기이방성과 교환바이어스에 관한 연구)

  • Kim, Ka-Eon;Choi, Hyeok-Cheol;You, Chun-Yeol
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • We investigate the exchange bias effect in $[Pd/Co]_5$ superlattice structures which are representative system of the perpendicular magnetic anisotropy. We fabricate Si/$[Pd/Co]_5$/FeMn structures, and study the exchange bias variations by measuring hysteresis loop variations with thickness of FeMn layer. In order to optimize the perpendicular magnetic anisotropy, we fix the thickness of Pd with 1.1 nm and investigate the dependence of the perpendicular magnetic anisotropy on the ferromagnetic Co layer thickness. As results, we find that the biggest coercivity in 0.3 nm of Co layer without FeMn layer. The biggest exchange bias field is found for 0.3 nm of Co layer when we change the Co thickness with fixed FeMn thickness. When we vary thickness of FeMn layer, the biggest coercivity is found for 5 nm of FeMn layer. No exchange bias is observed when the FeMn layer is thinner than 3 nm, and the exchange bias field increases with FeMn layer thickness continuously up to 15 nm.

Preparation and Characterization of Heating Element for Inkjet Printer (잉크젯 프린터용 발열체의 제작과 특성연구)

  • 장호정;노영규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • The crystallized stable cobalt silicide$(CoSi_2)$ films were prepared on $poly-Si/SiO_2/Si$substrates for the application of inkjet printing head as a heating element with omega shape. The structural images and temperature resistance coefficient were investigated. The value of temperature resistance coefficient of the heating element was found to be about $0.0014/^{\circ}C$. The maximum power of the heating element was 2 W at the applied voltage of 2 V, 10 kHz in frequency and $1{\mu}s$ in pulse width. From the investigation of fatigue property according to the repeated applied voltages, there was no drastic changes in the resistances of heating element under the condition of $10^8$ pulsed cycles at below 15 V biased voltage. In contrast, the resistance of heating element was greatly increased at $10^6$ pulsed cycles when the heating element was operated at 17 V.

  • PDF