• Title/Summary/Keyword: Coaxial air

Search Result 110, Processing Time 0.032 seconds

Numerical Analysis of Steam-methane Reforming Reaction for Hydrogen Generation using Catalytic Combustion (촉매 연소를 열원으로 한 수증기-메탄개질반응 전산유체해석)

  • Lee, Jeongseop;Lee, Kanghoon;Yu, Sangseok;Ahn, Kookyoung;Kang, Sanggyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • A steam reformer is a chemical reactor to produce high purity hydrogen from fossil fuel. In the steam reformer, since endothermic steam reforming is heated by exothermic combustion of fossil fuel, the heat transfer between two reaction zones dominates conversion of fossil fuel to hydrogen. Steam Reforming is complex chemical reaction, mass and heat transfer due to the exothermic methane/air combustion reaction and the endothermic steam reforming reaction. Typically, a steam reformer employs burner to supply appropriate heat for endothermic steam reforming reaction which reduces system efficiency. In this study, the heat of steam reforming reaction is provided by anode-off gas combustion of stationary fuel cell. This paper presents a optimization of heat transfer effect and average temperature of cross-section using two-dimensional models of a coaxial cylindrical reactor, and analysis three-dimensional models of a coaxial cylindrical steam reformer with chemical reaction. Numerical analysis needs to dominant chemical reaction that are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming(DSR) reaction. The major parameters of analysis are temperature, fuel conversion and heat flux in the coaxial reactor.

Spray Characteristics of Additive Manufactured Swirl Coaxial Injectors with Different Recess Lengths (적층제조 와류동축형 분사기 리세스 길이에 따른 분무특성)

  • Ahn, Jonghyeon;Lim, Ha Young;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.47-59
    • /
    • 2022
  • Four swirl coaxial injectors with different recess lengths were manufactured using an additive manufacturing method. Single-injection and bi-injection cold-flow experiments were performed using water and air as simulated propellants in an atmospheric pressure environment. According to the recess length and propellant flow conditions, the injection pressure drop and discharge coefficient were investigated, and the breakup length and spray angle were measured using an image processing technique. In the bi-injection pressure drop and discharge coefficient results, the liquid-side injector was not affected by the recess. For the gas-side injector, however, the injection pressure drop increased and the discharge coefficient decreased as the recess length increased. The breakup length in the single-injection increased with the increase of the recess, but decreased in the bi-injection.

A Study on Treatment Efficiency of Toluene and CO2 using Vortex Cyclones (보텍스 사이클론을 이용한 Toluene과 CO2 처리효율에 관한 연구)

  • 임계규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.493-501
    • /
    • 2004
  • The principle of vortex tube and cyclone was introduced to enhance the treatment efficiency of waste air streams containing particulate matters, toluene, and others developed by Hangreen Tech, Ltd. and Hoseo Chemical and Industrial Technology R&D Center. Adsorption, condensation, and/or coagulation could be induced at low temperature zone formed by vortex tube and Joule-Thomson expansion. The pressurized air was introduced at the tangential direction into the cyclone system applied with the coaxial funnel tube. Easily condensible vapors such as toluene. carbon dioxide, and water vapor were adsorbed enforcedly on coagulated or condensed materials which were formed as cores for coagulation or condensation by themselves. These types of coagulation or condensation rates were rapidly promoted as the diameter being growing up. The maximum removal efficiency for carbon dioxide and toluene was achieved to about 87 and 90 percent, respectively. The Joule-Thomson coefficients were increased with the pressure of air injected in the range of the relative humidities between 10% and 30%. An optimum value was observed within the range of the tested temperatures at a fixed pressure. In conclusion. it could be identified that the treatment efficiency would be depended on the pressure of the process air introduced and physical and chemical characteristics of waste air streams containing target materials for a designed system. The final design parameters should be decided depending upon the given system and target materials.

Soot Generation in a Coaxial Laminar Diffusion Flame (동축 층류 확산화염에서의 그을음 생성)

  • Shim, Sung-Hoon;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.9-15
    • /
    • 2002
  • Soot generation by combustion process has been investigated with objective of understanding of chemical reaction responsible for its formation in a coaxial laminar propane jet diffusion flame. For the direct photos, as the coflowing air flow rate is reduced, the area of soot luminous zone increases at first, then becomes smaller and smaller, and even disappears. The aspects of soot deposition can be acquired by using nine $15{\mu}m$ thin SiC fibers are positioned horizontally across the flame. Deposited soots on SiC fibers show the soot inception point and growth and soot oxidation zone in a typical propane diffusion. Soot is not generated anymore in a oxidizer deficient conditions of near-extinction and flame is fully occupied by transparent blue flame. It suggests that nonsooting pyroligneous blue reaction is being dominant in a oxidizer deficient ambience. In comparison with luminosities of SiC fibers and flame itself, indirect evidence is found that the process of soot nucleation and growth is endothermic reaction. It is remarkable that there exists two adjacent regions to have antithesis characteristics; one is exothermic reaction of blue flame and another endothermic reaction zone of soot formation.

  • PDF

Spray Characteristics of the Rocket Oxidizer-rich Preburner Injection System

  • Yang, Joon-Ho;Choi, Seong-Man;Han, Young-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.255-259
    • /
    • 2008
  • This paper presents the spray characteristics of the oxidizer rich preburner injector which can be used in the high-thrust rocket system. We designed the basic shape of the liquid-liquid coaxial swirl injector for the rocket oxidizer rich preburner injection system. To understand the spray angle variation with the high pressure environment, the spray visualization in the high pressure chamber was preformed. Also we measured the droplet velocity, the Sauter Mean Diameter(SMD), the volume flux and the number density with the PDPA system by using water in atmospheric pressure. The results show that the spray angle is reduced by increasing ambient pressure and maximum droplet velocity is shown from a nozzle tip and then the droplet velocity decreases as a spray moves to the downstream. The SMD decreases on the axial distance from 20 mm to 50 mm but it increases over 50 mm. That is due to the increasing number of collision with each droplet and interaction with ambient air on going downstream direction.

  • PDF

Flame Structure and Light Emission Characteristics in Coaxial Laminar Partially Premixed $CH_{4}/Air$ Flames;Effect of Central Fuel Injection (이중동축 메탄/공기 층류 부분 예혼합화염에서의 화염구조와 자발광 배출 특성;안쪽관 연료주입의 영향)

  • Oh, Jeong-Seog;Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1116-1121
    • /
    • 2004
  • In this study, the effect of central fuel injection on a coaxial laminar $CH_{4}/air$ flame was experimented at the defined premixing condition(${\Phi}=1.90$, ${\sigma}=50/75/100%$, x/D=10). The partial premixing parameter are the equivalence ratio that total fuel is fixed at 200cc/min, the fuel split degree which means the percentage of fuel entering the outer tube to the total amount, and the mixing distance indicating the nonreactant mixture's homogeneity between inner tube top and burner exit. The object is to investigate the flame structure and chemiluminescence characteristics of laminar partial premixed flame as changing mixing parameters. The radical signal was acquired from ICCD camera and PMT. Each intensity was compared with Abel inverted value for measuring the effect of background light on the peak signal location and the intensity at central preheat zone. The results show that the peak location of each radical was broaden as the fuel split degree increasing because the mixing quality was enhanced. and $OH^{\ast}$ is a good indicator for flame front between reaction and preheat zone. At last $CH_{2}^{\ast}$ has the same tendency with $CH^{\ast}$ but a thinner reaction zone than $CH^{\ast}$ due to a rapid decay on the burned gas side.

  • PDF

Study on Heat Transfer and Pressure Drop Characteristics of Internal Heat Exchanger for $CO_2$ Heat Pump under Cooling Condition ($CO_2$ 열펌프용 내부 열교환기의 냉방조건에서 열전달 및 압력 강하 특성에 대한 연구)

  • Kim, Dae-Hoon;Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.517-525
    • /
    • 2008
  • In order to study the heat transfer and pressure drop of an internal heat exchanger for $CO_2$ heat pump under cooling condition, the experiment and numerical analysis were performed. Four kinds of internal heat exchangers with a coaxial tube type and a micro-channel tube type were used. The experimental apparatus consisted of a test section, a power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. The section-by-section method and Hardy-Cross method were used for the numerical analysis. The effects of the internal heat exchanger refrigerant flow rate, the length of the internal heat exchanger, the operating condition of the gas-cooler, the evaporator and the type of the internal heat exchangers were investigated. With increasing of the flow rate, the heat transfer rate increased about 25%. The heat transfer rate of the micro-channel tube type was higher about 100% than that of the coaxial tube type. With increasing of the length of the internal heat exchanger, the heat transfer rate increased about $20{\sim}50%$. The pressure drop of the low-side tube was larger compared with that of the high-side tube.

Structural glass panels: An integrated system

  • Bidini, G.;Barelli, L.;Buratti, C.;Castori, G.;Belloni, E.;Merli, F.;Speranzini, E.
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.327-332
    • /
    • 2022
  • In building envelope, transparent components play an important role. The structural glazing systems are the weak element of the casing in terms of mechanical resistance, thermal and acoustic insulation. In the present work, new structural glass panels with granular aerogel in interspace were investigated from different points of view. In particular, the mechanical characterization was carried out in order to assess the resistance to bending of the single glazing pane. To this end, a special instrument system was built to define an alternative configuration of the coaxial double ring test, able to predict the fracture strength of glass large samples (400 × 400 mm) without overpressure. The thermal and lighting performance of an innovative double-glazing façade with granular aerogel was evaluated. An experimental campaign at pilot scale was developed: it is composed of two boxes of about 1.60 × 2 m2 and 2 m high together with an external weather station. The rooms, identical in terms of size, construction materials, and orientation, are equipped with a two-wing window in the south wall surface: the first one has a standard glazing solution (double glazing with air in interspace), the second room is equipped with the innovative double-glazing system with aerogel. The indoor mean air temperature and the surface temperature of the glass panes were monitored together with the illuminance data for the lighting characterization. Finally, a brief energy characterization of the performance of the material was carried out by means of dynamic simulation models when the proposed solution is applied to real case studies.

Liftoff mechanisms in hydrogen turbulent non-premixed jet flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-ki;Choi, Yeong-Il;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.7-12
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone. PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs where the local flow velocity is valanced with the turbulent flame propagation velocity.

  • PDF