• Title/Summary/Keyword: Coaxial Jet

Search Result 109, Processing Time 0.022 seconds

The Experimental Study of Supersonic, Dual, Coaxial, Free, Jets (환형동축 초음속 자유 제트유동에 관한 실험적 연구)

  • Lee, K.H.;Lee, J.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.323-328
    • /
    • 2001
  • Supersonic coaxial, axisymmetric, jets issuing from various kinds of dual coaxial nozzles were experimentally investigated. Four different kinds of coaxial, dual nozzles were employed to characterize the major features of the supersonic, coaxial, dual jets. Two convergent-divergent supersonic nozzles with an impinging angle in the jet axis of the annular jets were designed to have the Mach number 2.0 and used to compare the coaxial jet flows with those discharging from two sonic nozzles. The primary pressure ratio was changed in the range from 4.0 to 10.0 and the assistant jet ratio from 1.0 to 4.0. The results obtained show that the assistant jets from the annular nozzle affect the coaxial jet flows and an increase of both the primary jet pressure ratio and assistant jet pressure ratio produces longer supersonic length of the dual, coaxial jet.

  • PDF

An Experimental Study of the Wall Temperature of the Supersonic Impinging Coaxial Jet Using an FLIR (적외선 카메라를 이용한 초음속 충돌 동축제트의 벽면 온도 측정)

  • Gwak, Jong-Ho;Kumar, V. R. Sanal;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1631-1636
    • /
    • 2004
  • The supersonic impinging jet has been extensively applied to rocket launching system, gas jet cutting control, gas turbine blade cooling, etc. In such applications, wall temperature of an object on which supersonic jet impinges is a very important factor to determine the performance and life of the device. However, wall temperature data of supersonic impinging jets are not enough to data. The present study describes an experimental work to measure the wall temperatures of a vertical flat plate on which supersonic, dual, coaxial jet impinges. An Infrared camera is employed to measure the wall temperature distribution on the impinging plate. The pressure ratio of the jet is varied to obtain the supersonic jets in the range of over-expanded to moderately under-expanded conditions at the exit of coaxial nozzle. The distance between the coaxial nozzle and the flat plate was also varied. The coaxial jet flows are visualized using a Shadow optical method. The results show that the wall temperature distribution of the impinging plate is strongly dependent on the jet pressure ratio and the distance between the nozzle and plate.

  • PDF

Study of the Flow Characteristics of Supersonic Coaxial Jets (초음속 동축제트의 유동특성에 관한 연구)

  • Lee, Gwon-Hui;Gu, Byeong-Su;Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1702-1710
    • /
    • 2001
  • Supersonic coaxial jets are investigated numerically by using the axisymmetric, Wavier-Stokes equations which are solved using a fully implicit finite volume method. Three different kinds of coaxial nozzles are employed to understand the flow physics involved in the supersonic coaxial jets. Two convergent-divergent supersonic nozzles are designed to have the same Mach number 2.0, and used to compare the coaxial jet flows with those discharging from one constant-area nozzle. The impingement angle of the annular jets are varied. The primary pressure ratio is changed in the range from 2.0 to 10.0 and the assistant jet ratio from 1.0 to 3.0. The results obtained show that the fluctuations of the total pressure and Mach number along the jet axis are much higher in the constant-area nozzle than those in the convergent-divergent nozzles, and the constant-area nozzle lead to higher total pressure losses, compared with the convergent-divergent nozzles. The assistant jets from the annular nozzle affect the coaxial jet flows within the distance less than about ten times the nozzle throat diameter, but beyond it the coaxial jet is conical with self-similar velocity profiles. Increasing both the primary jet pressure ratio and the assistant jet pressure ratio produces a longer coaxial jet core.

Study of the Shock Structure of Supersonic, Dual, Coaxial, Jets (초음속 이중 동축 제트유동에서 발생하는 충격파 구조에 관한 연구)

  • Lee, K.H.;Lee, J.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.417-422
    • /
    • 2001
  • The shock structure of supersonic, dual, coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure of the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number of 2.0 and 3.0, and are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 4.0 and 10.0 and the assistant jet pressure ratio from 1.0 to 4.0. The results obtained show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter. The annular shock system is found depending the assistant and primary jet pressure ratios.

  • PDF

The Experimental Study of Supersonic, Dual, Coaxial, Free, Jets (The effects of the assistant jet pressure ratio) (초음속 환형동축 자유 제트유동에 관한 실험적 연구 (보조제트 압력비 영향에 관하여))

  • 이권희;이준희;김희동
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.51-58
    • /
    • 2001
  • Supersonic, axisymmetric, jets issuing from several kinds of dual, coaxial, nozzles were experimentally investigated. Four different kinds of coaxial, dual nozzles were employed to characterize the major. features of the supersonic, coaxial, dual jets. Two convergent-divergent supersonic nozzles with different impinging angle on the jet axis of were designed to have the Mach number 2.0 and used to compare the coaxial jet flows with those discharging from two sonic nozzles. The primary pressure ratio was changed in the range from 4.0 to 10.0 and the assistant jet ratio from 1.0 to 4.0. The results obtained show that the assistant jets from the annular. nozzle affect the coaxial jet flows and an increase of both the primary jet pressure ratio and assistant jet pressure ratio lead to a longer supersonic length of the dual, coaxial jet.

  • PDF

Experimental Study on Flame-Vortex Interactions in Turbulent Hydrogen Non-premixed Flames with Coaxial Air (동축공기 수소확산 화염에서의 화염과 와류의 상호작용 실험연구)

  • Kim, Mun-Ki;Oh, Jeong-Suk;Choi, Young-Il;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.86-94
    • /
    • 2006
  • This paper investigates the effects of acoustic forcing on NOx emissions and mixing process in the near field region of turbulent hydrogen nonpremixed flames. The resonance frequency was selected to force the coaxial air jet acoustically, because the resonance frequency is effective to amplify the forcing amplitude and reduce NOx emissions. When the resonance frequency is acoustically excited, a streamwise vortex is formed in the mixing layer between the coaxial air jet and coflowing air. As the vortex develops downstream, it entrains both ambient air and combustion products into the coaxial air jet to mix well. In addition, the strong vortex pulls the flame surface toward the coaxial air jet, causing intense chemical reaction. Acoustic excitation also causes velocity fluctuations of coaxial air jet as well as fuel jet but, the maximum value of centerline fuel velocity fluctuation occurs at the different phases of $\Phi$=$180^{\circ}$ for nonreacting case and $\Phi$=$0^{\circ}$ for reacting case. Since acoustic excitation enhances the mixing rate of fuel and air, the line of the stoichiometric mixture fraction becomes narrow. Finally, acoustic forcing at the resonance frequency reduces the normalized flame length by 15 % and EINOx by 25 %, compared to the flame without acoustic excitation.

  • PDF

Flame Length Scaling and Structure in Turbulent Hydrogen Non-Premixed Jet Flames with Coaxial Air (동축공기 수소 확산화염의 구조 및 화염길이 스케일링)

  • Yun, Sang-Wook;Oh, Jeong-Seog;Kim, Mun-Ki;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.105-110
    • /
    • 2006
  • Many previous works have been performed to provide correlations of flame length, theoretically and experimentally. Most of these results studied were conducted in vertical turbulent flame with no coaxial air condition. The present study analyzes the flame length scaling with coaxial air. In turbulent hydrogen non-premixed jet flames with coaxial air, flame length scaling theoretically proposed so far has been related with the concept of a far-field equivalent source. At high coaxial air to fuel velocity ratio, $U_A/U_F$, however, this scaling theory has some difference with experimental flame length data. This difference is understood to be due to the fact that the theory is based on far-field notion, while the effect of coaxial air on jet flame occurs in the region near the nozzle exit. Therefore, we define effective jet density $P_{eff}$ involving the concept of near-field so that effective jet diameter can be extended to the near-field region. In this condition, we modify the correlation and compare with experimental data.

  • PDF

A Fundamental Study of Supersonic Coaxial Jets for Gas Cutting (가스절단용 초음속 제트유동에 관한 기초적 연구)

  • Lee, Gwon-Hui;Gu, Byeong-Su;Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.837-844
    • /
    • 2001
  • Jet cutting technology currently makes use of a generic supersonic gas jet to improve the cutting speed and performance. In order to get a better understanding of the flow characteristics involved in the supersonic jet cutting technology, the axisymmetric Navier-Stokes equations have been solved using a fully implicit finite volume method. Computations have been conducted to investigate some major characteristics of supersonic coaxial turbulent jets. An assistant gas jet has been imposed on the primary gas jet to simulate realistic jet cutting circumstance. The pressure and the temperature ratios of the primary and assistant gas jets are altered to investigate the major characteristics of the coaxial jets. The total pressure and Mach number distributions, shock wave systems, and the jet core length which characterize the coaxial jet flows are strongly affected by the pressure ratio, but not significantly dependent on the total temperature ratio. The assistant gas jet greatly affects the basic flow characteristics of the shock system and the core length of under and over-expanded jets.

Effect of Outer Stagnation Pressure on Jet Structure in Supersonic Coaxial Jet (초음속 동축제트의 구조에 대한 외부 정체압력의 영향)

  • Kim, Myoung-Jong;Woo, Sang-Woo;Lee, Byeong-Eun;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.664-669
    • /
    • 2001
  • The characteristics of dual coaxial jet which composed of inner supersonic nozzle of 26500 in constant expansion rate with 1.91 design Mach number and outer converging one with $40^{\circ}$ converging angle with the variation of outer nozzle stagnation pressures are experimentally investigated in this paper. In which the stagnation pressure for the inner supersonic nozzle is 750kPa thus, the inner jet leaving the nozzle is slightly underexpanded. The plenum pressures of outer nozzle are varied from 200 to 600kPa. Flow visualizations by shadowgraph method, impact pressure and centerline static pressure measurements of dual coaxial jet are presented. The results show that the presence of outer jet affects significantly the structures and pressure distributions of inner jet. And outer jet causes Mach disk which does not appear for the case of single jet stream. As the stagnation pressure of outer jet increases, impact pressure undulation is severe, but the average impact pressure keeps high far downstream.

  • PDF

NUMERICAL STUDY ON THE CHARACTERISTICS OF VORTEX FREQUENCY AND LAMINAR MIXING OF A PASSIVE SCALAR IN COAXIAL JET FLOWS (동축제트의 와류주파수 및 혼합특성에 대한 수치해석)

  • Kim, Won-Hyun;Park, Tae-Seon
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.49-55
    • /
    • 2009
  • This study focuses on the near-field vortical structure and dynamics of coaxial jets. The characteristics of laminar flow and mixing in coaxial jets are investigated using a unsteady flow simulation. In order to analyze the geometric effects on the vortical structure, several cases of different configurations are selected for various values of the velocity ratio of inner jet to outer jet. From the result, it is confirmed that the flow mixing is promoted by the development of vortical structure and the interaction between inner jet and outer jet. This feature is strongly related to the vortex frequency in the shear-layers. The vortex frequency depends on the velocity ratio and the lip thickness of inner nozzle, but the outer pipe length has no effect on the frequency variation.