• 제목/요약/키워드: Coating tool

검색결과 195건 처리시간 0.027초

다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성 (Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

DARS에 의한 CAPSS 배출자료의 불확도 평가 (Uncertainty Assessment for CAPSS Emission Inventory by DARS)

  • 김정;장영기
    • 한국대기환경학회지
    • /
    • 제30권1호
    • /
    • pp.26-36
    • /
    • 2014
  • The uncertainty assessment is important to improve the reliability of emission inventory data. The DARS (Data Attribute Rating System) have recommended as the uncertainty assessment technic of emission inventory by U.S. EPA (Environmental Protection Agency) EIIP (Emission Inventory Improvement Program). The DARS score is based on the perceived quality of the emission factor and activity data. Scores are assigned to four attributes; measurement/method, source specificity, spatial congruity and temporal congruity. The resulting emission factor and activity rate scores are combined to arrive at an overall confidence rating for the inventory. So DARS is believed to be a useful tool and may provide more information about inventories than the usual qualitative grading procedures (e.g. A through E). In this study, the uncertainty assessment for 2009 CAPSS (Clean Air Policy Support System) emission inventory is conducted by DARS. According to the result of this uncertainty assessment, the uncertainty for fugitive dust emission data is higher than other sources, the uncertainty of emission factor for surface coating is the highest value, and the uncertainty of activity data for motor cycle is the highest value. Also it is analysed that the improvement of uncertainty for activity data is as much important as the improvement for emission factor to upgrade the reliability of CAPSS emission inventory.

Photo Polymer 마스크와 미세입자분사가공을 이용한 미세구조물 제작 (Fabrication of Micro Structure Using Photo Polymer Mask and Micro Abrasive Jet Machining)

  • 고태조;박동진;이인환;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1175-1178
    • /
    • 2005
  • Brittle materials, especially single-crystal silicon wafer, are widely used for sensors, IC industry, and MEMS applications. e general machining process of crack easy materials is by chemical agents, but it is hazardous and time consuming. Also, it is difficult to get high aspect ratio micro structure. As an alternative tool, an AJM(Abrasive jet machining) is promising method in terms of high aspect ratio and production cost. In this study, to get more precise detail compared to general AJM, photo polymer mask, SU-8, used in photolithography was applied in AJM. Process parameters such as abrasive diameter, air pressure, nozzle diameter, flow rate of abrasive in AJM and a variety of conditions in spin coating were decided. Finally, micro channel and mixer was fabricated to see the efficiency of the AJM with photo polymer mask.

  • PDF

상전이 마이크로캡슐이 함유된 고기능성 축열.발열 직물의 제조 및 물리적 특성 : 습식코팅 (Preparation and Physical Characteristics of High-Performance Heat Storage.Release Fabrics with PCMMc : Wet coating process)

  • 구강;최종덕;최종석;김은애;박영미
    • 한국염색가공학회지
    • /
    • 제19권1호
    • /
    • pp.24-30
    • /
    • 2007
  • Heat storage/release system in textile is a useful tool to increase energy efficiency and enhance comfortable microclimate of clothing. Phase change materials(PCM) are used in regulating storage and release properties of thermal energy. To investigate the temperature regulating ability of fabrics with PCM microcapsule(PCMMc), Nylon fabrics were coated with PCMMc via wet processing and they were characterized by SEM, DSC and infrared thermal analyzer. Also, water moisture transpiration, water penetration resistance, peel strength and washing durability of the fabrics were assessed. The water vapor permeation and water penetration resistance decreased with increasing PCMMc content. In DSC analysis, it can be seen that the microencapsulated fabric showed both exothermic md endothermic phenomena at specific temperature. Peel strength was decreased with increasing PCMMc content.

스퍼터링법으로 TiN 및 ZrN 피막 코팅된 STD 61의 표면특성 (Surface Characteristics of TiN and ZrN Film Coated STD 61 by Sputtering)

  • 은상원;최한철
    • 한국표면공학회지
    • /
    • 제43권6호
    • /
    • pp.260-265
    • /
    • 2010
  • STD 61 steel has been widely used for tools, metallic mold and die for press working because of its favorable mechanical properties such as high toughness, and creep strength as well as excellent oxidation resistance. The STD 61 tool steel coated with TiN and ZrN by sputtering results in improvement of wear and corrosion resistance. In this study, surface characteristics of TiN and ZrN film coated STD 61 by sputtering were studied by using FE-SEM, EDS, XRD, and XRR and nanoindentation tests. From the results of surface characteristics of coated specimen, the ZrN coated surface showed finer granular than that of TiN coated surface. The coated layer structures of ZrN and TiN were grown to (111) and (200) preferred orientation. From the results of XRR test for surface roughness, density and growth rate of coating film, surface roughness and growth rate of ZrN coated film revealed lower values those of TiN coated film, whereas density of ZrN coated film showed higher values than that of TiN coated film. From the nanohardness and elastic modulus test, nanohardness value and elastic modulus of ZrN coated film became higher than those of TiN coated film.

다이캐스팅 금형의 내구 수명평가와 금형강 소재 선정에 대한 연구 (Study on Life Evaluation of Die Casting Mold and Selection of Mold Material)

  • 김진호;홍석무;이종찬
    • 한국기계가공학회지
    • /
    • 제12권3호
    • /
    • pp.7-12
    • /
    • 2013
  • In Die casting process, the problem of die degradation is often issued. In oder to increase of die life the material degradation of die steel was investigated using test core pins. Three test core pins were positioned in front of the gate entry and observed washout and soldering resistance during Mg die casting process. The test parameters are set as different commercial die materials, coatings condition and hardness of die surface. Usign 220t magnesium die casting machine was employed to cast AZ91 magnesium alloys. After 150 shots, macroscopic observation of die surface was carried out. Additional 50 cycles later, test pins were chemically cleaned with 5% HCl aqueous solution to find out the existence of washout and soldering layers. Microstructural characterization of die surface and the die roughness measurement were performed together. Computational simulation using AnyCasting program was also beneficial to correlate the extent of die damage with the position of test pin inside die cavity. As results, the optimal combination of die steel with productive coating as well as its hardness was drawn out. it will be helpful to decide the material and condition considering increasing of tool life.

층상구조를 가진 증발식 열교환기 습채널의 표면 젖음도 해석 (Analysis on Wetting Behavior of A Lamellar Type Wet Channels in An Evaporative Heat Exchanger)

  • 오동욱;박재범;송찬호
    • 설비공학논문집
    • /
    • 제28권7호
    • /
    • pp.283-287
    • /
    • 2016
  • One of the most important factors for determining the thermal performance of an evaporative cooling system is the wettability of the evaporative heat exchanger surface. Evaporation of a widely spread water film on the heat exchanger surface promotes heat transfer between the "dry" air and "wet" air passages. Hydrophilic coating is generally applied on the heat exchanger surfaces to increase the wettability of the heat exchanger surface and the COP of the evaporative cooling system. In this paper, a simple lamellar patterned structure is suggested to maximize the spreading of a water film on the vertically oriented walls. The capillary height of the lamellar structured grooves is analyzed through a theoretical model, and the results are compared with the numerical analysis through a finite element analysis tool, SE-FIT. A good agreement between the theoretical model and the numerical analysis can be observed as long as the channel depth is comparable to or larger than the channel width of the lamellar structure.

코팅공구의 제조에서 공정인자가 증착특성에 미치는 영향 (Effect of Process Parameters on Deposition Characteristics in Fabrication of Coated Tools)

  • 김종희
    • 한국표면공학회지
    • /
    • 제28권6호
    • /
    • pp.368-375
    • /
    • 1995
  • Thermal CVD method is in general used for the fabrication of TiC/$Al_2O_3$-coated carbide tools. The growth of TiC layer and the coating morphology depended on the chemical composition of the hard metal substrate on which the tool properties were strongly influenced. TiC-coated layer was grown by the diffusion of carbon from the substrate, whereas the growth of $Al_2O_3$ layer was unrelated to the composition of substrate. In the nitride hard coatings of Zr, Nb and Mo metals deposited on high speed steel substrate by magnetron sputtering, the reactivity of the metal elements was decreased with increasing group number in one period of the periodic system. The hard material films exhibited the highest adhesion with the chemical composition of stoichiometry or substoichiometry. The critical load as a measure of adhesion was evaluated using scratch tester. The CVD tools indicated the values of 80 and 40N in the coated layers with proper bonding to the substrate and with $\eta$ phase of 1$\mu\textrm{m}$ in the interface respectively, but the nitride films prepared by sputtering of PVD showed only the values between 10 and 20N.

  • PDF

Evaluation anisotropy in stochastic texture images using wavelet transforms for characterizing printing, coating and paper structure

  • 성용주
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2005년도 추계학술발표논문집
    • /
    • pp.45-53
    • /
    • 2005
  • A novel method for evaluating the anisotropy of the deterministic features in a stochastic 2D data is introduced. The ability of the wavelet transform for the identification of the abrupt discontinuities could be used to characterize the boundary of the deterministic area in a 2D stochastic data, such as flocs in paper structure. The one-dimensional wavelet transform with a small-scale range in MD and CD could quantify the amount of the edge in both directions, depending on the intensity of each floc. The flocs that are aligned in the MD direction result in a higher value of local wavelet energy in the CD direction. Therefore, the ratio of the total wavelet energy in CD and MD directions can be used as a new anisotropy index. This index is a measure of the floc-orientation and can provide an excellent tool to obtain the orientation distribution and the major oriented angle of flocs. Various simulated images and real stochastic data such as local gloss variation of printed image and formation image, have been tested and the results show this analysis method is very reliable to measure the anisotropy of the deterministic features.

  • PDF

AIP법으로 증착된 TiN/CrN 다층박막의 특성 분석 (Analysis of Properties Multi-Layered TiN/CrN Thin Films Deposited by AIP Method)

  • 백민숙;윤동주;허기복;김병일
    • 한국재료학회지
    • /
    • 제28권7호
    • /
    • pp.405-410
    • /
    • 2018
  • TiN and CrN thin films are among the most used coatings in machine and tool steels. TiN and CrN are deposited by arc ion plating(AIP) method. The AIP method inhibits the reaction by depositing a hard, protective coating on the material surface. In this study, the characteristics of multi-layer(TiN/CrN/TiN(TCT), CrN/TiN/CrN(CTC)) are investigated. For comparison, TiN with the same thickness as the multilayer is formed as a single layer and analyzed. Thin films formed as multilayers are well stacked. The characteristics of micro hardness and corrosion resistance are better than those of single layer TiN. The TiN/CrN peak is confirmed because both TCT and CTC are formed of the same component(TiN, CrN), and the phase is first grown in the (111) direction, which is the growth direction. However, the adhesion and abrasion resistance of the multilayer films are somewhat lower.