• Title/Summary/Keyword: Coating mixture

Search Result 281, Processing Time 0.024 seconds

Preparation of Self-Cleaning Coating Films with Nano- and Microstructure (나노마이크로 구조의 자기세정 기능성 코팅막의 제조)

  • Jeong, A-Rong;Kim, Jun-Su;Yun, Jon-Do
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.416-420
    • /
    • 2012
  • Recently nanoscience and nanotechnology have been studied intensively, and many plants, insects, and animals in nature have been found to have nanostructures in their bodies. Among them, lotus leaves have a unique nanostructure and microstructure in combination and show superhydrophobicity and a self-cleaning function to wipe and clean impurities on their surfaces. Coating films with combined nanostructures and microstructures resembling those of lotus leaves may also have superhydrophobicity and self-cleaning functions; as a result, they could be used in various applications, such as in outfits, tents, building walls, or exterior surfaces of transportation vehicles like cars, ships, or airplanes. In this study, coating films were prepared by dip coating method using polypropylene polymers dissolved in a mixture of solvent, xylene and non-solvent, methylethylketon, and ethanol. Additionally, attempts were made to prepare nanostructures on top of microstructures by coating with the same coating solution with an addition of carbon nanotubes, or by applying a carbon nanotube over-coat on polymer coating films. Coating films prepared without carbon nanotubes were found to have superhydrophobicity, with a water contact angle of $152^{\circ}$ and sliding angle less than $2^{\circ}$. Coating films prepared with carbon nanotubes were also found to have a similar degree of superhydrophobicity, with a water contact angle of 150 degrees and a sliding angle of 3 degrees.

Effect of Molinate Granular Formulations on Weed Control Efficacy and Growth of Rice Plants (Molinate 혼합입제(混合粒劑)의 제형별(劑型別) 살초효과(殺草效果) 및 벼의 생장(生長)에 미치는 영향(影響))

  • Pyon, J.Y.;Kim, M.H.;Oak, H.S.;Park, S.H.
    • Korean Journal of Weed Science
    • /
    • v.7 no.3
    • /
    • pp.316-320
    • /
    • 1987
  • In order to determine effects of molinate mixture granular formulations on release rate and weed control efficacy of herbicides and growth of rice plants, zeolite impregnation, slurry, and sand-coating granules were tested in laboratory and greenhouse. Release rate of molinate and simetryn was faster in sand-coating granule than in zeolite impregnation and slurry type granules. Mixture granular formulations of molinate/simetryn or molinate/simetryn/MCPB showed good weed control efficacy and this trend was more remarkably shown in sand-coating granule. Sand-coating granule more inhibited growth of rice plants compared to zeolite impregnation and slurry type granules.

  • PDF

Study on the corrosion resistance of coating mixture to acid for the desulfurization system (탈황설비용 탄소강 코팅조성물의 내산성에 관한 연구)

  • Kim, In-Ki;Ryu, Jeong-Koon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.278-285
    • /
    • 2006
  • Coating mixtures of the resin B-H for the application to the desulfurization system of power plant were coated on carbon steels and cured at the temperature of $65^{\circ}C{\sim}80^{\circ}C$. After being contacted with 70wt% $H_2SO_4$ solution of $100^{\circ}C\;and\;120^{\circ}C$ for several hours, their composition, Vicker's hardness and microstructures by SEM were examined. Corrosion resistance of the coating mixtures to $H_2SO_4$ solution was related to the content of $SO_3$ in the coated specimens after corrosion test. The lower curing temperature and the shorter curing time the coated specimens went through, the higher corrosion resistance to acid they showed, but the more cracks were developed at higher temperature. It was realized that the corrosion resistance to sulfaric acid solution was increased on the condition of curing temperature above $65^{\circ}C$ and curing time above 12 hours at least.

The Morphology and Adhesion of TiCN Film formed by PECVD (PECVD 에 의해 형성된 TiCN 박막의 형상 및 밀착성)

  • Huh, J.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.3
    • /
    • pp.118-126
    • /
    • 2002
  • TiCN thin films were deposited on tool steels at $510^{\circ}C$ by PECVD from a $TiCl_4+N_2+CH_4+H_2+Ar$ gaseous mixture. The microstructures and preferred orientation were investigated. The micro-scratch tests were performed using a system equipped with an acoustic emission sensor. Critical loads were determined to evaluate the adhesion of TiCN to substrate. The influences of the microstructures of substrates, double layered coatings, and coatings after nitriding(duplex coating) were investigated. The experimental results showed that the microstructures of substrates and double layered coating did not affect the critical loads considerably. By the duplex coating, critical loads were not always increased. In some cases, duplex coatings decreased critical loads significantly despite of absence of black layer. In this study, we tried to relate the results of scratch test to the residual stress analysis. Nitriding before the coating reduces the tensile residual stress in the film, which gives rise to low critical load in scratch test.

Electrical Properties and Self-poling Mechanism of CNT/PVDF Piezoelectric Composite Films Prepared by Spray Coating Method

  • Lee, Sunwoo;Jung, Nak-Chun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.256-256
    • /
    • 2013
  • Carbon nanotubes (CNT) / polyvinylidene fluoride (PVDF) piezoelectric composite films for nanogenerator devices were fabricated by spray coating method. When the CNT/PVDF mixture solution passes through the spray nozzle with small diameter by the compressed nitrogen gas, electric charges are generated in the liquid by a triboelectric effect. Then randomly distributed ${\beta}$ phase PVDF film could be re-oriented by the electric field resulting from the accumulated electrical charges, and might be resulted in extremely one-directionally aligned ${\beta}$ phase PVDF film without additional electric field for poling. X-ray diffraction patterns were used to investigate crystal structure of the CNT/PVDF composite films. It was confirmed that they revealed extremely large portion of the ${\beta}$ phase PVDF crystalline in the film. Therefore we could obtain the poled CNT/PVDF piezoelectric composite films by the spray coating method without additional poling process. Charge accumulation and resulting electric field generation mechanism by spray coating method were shown in Fig. 1. The capacitance of the CNT/PVDF films increased by adding CNTs into the PVDF matrix, and finally saturated. However, the I-V curves didn't show any saturation effect in the CNT concentration range of 0~4 wt%. Therefore we can control the performance of the devices fabricated from the CNT/PVDF composite film by adjusting the current level resulted from the CNT concentration with the uniform capacitance value.

  • PDF

Friction and Wear Properties of Boron Carbide Coating under Various Relative Humidity

  • Pham Duc-Cuong;Ahn Hyo-Sok;Yoon Eui-Sung
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.39-44
    • /
    • 2005
  • Friction and wear properties of the Boron carbide ($B_{4}C$) coating 100 nm thickness were studied under various relative humidity (RH). The boron carbide film was deposited on silicon substrate by DC magnetron sputtering method using $B_{4}C$ target with a mixture of Ar and methane ($CH_4$) as precursor gas. Friction tests were performed using a reciprocation type friction tester at ambient environment. Steel balls of 3 mm in diameter were used as counter-specimen. The results indicated that relative humidity strongly affected the tribological properties of boron carbide coating. Friction coefficient decreased from 0.42 to 0.09 as the relative humidity increased from $5\%$ to $85\%$. Confocal microscopy was used to observe worn surfaces of the coating and wear scars on steel balls after the tests. It showed that both the coating surface and the ball were significantly worn-out even though boron carbide is much harder than the steel. Moreover, at low humidity ($5\%$) the boron carbide showed poor wear resistance which resulted in the complete removal of coating layer, whereas at the medium and high humidity conditions, it was not. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses were performed to characterize the chemical composition of the worn surfaces. We suggest that tribochemical reactions occurred during sliding in moisture air to form boric acid on the worn surface of the coating. The boric acid and the tribochemcal layer that formed on steel ball resulted in low friction and wear of boron carbide coating.

Effect of Flux Chloride Composition on Microstructure and Coating Properties of Zn-Mg-Al Ternary Alloy Coated Steel Product (플럭스 염화물 조성이 Zn-Mg-Al 3원계 합금도금층의 미세조직 및 도금성에 미치는 영향)

  • Kim, Ki-Yeon;So, Seong-Min;Oh, Min-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.704-709
    • /
    • 2021
  • In the flux used in the batch galvanizing process, the effect of the component ratio of NH4Cl to ZnCl2 on the microstructure, coating adhesion, and corrosion resistance of Zn-Mg-Al ternary alloy-coated steel is evaluated. Many defects such as cracks and bare spots are formed inside the Zn-Mg-Al coating layer during treatment with the flux composition generally used for Zn coating. Deterioration of the coating property is due to the formation of AlClx mixture generated by the reaction of Al element and chloride in the flux. The coatability of the Zn-Mg-Al alloy coating is improved by increasing the content of ZnCl2 in the flux to reduce the amount of chlorine reacting with Al while maintaining the flux effect and the coating adhesion is improved as the component ratio of NH4Cl to ZnCl2 decreases. Zn-Mg-Al alloy-coated steel products treated with the optimized flux composition of NH4Cl·3ZnCl2 show superior corrosion resistance compared to Zn-coated steel products, even with a coating weight of 60 %.

The Evaluation of Crack Propagation in Functionally Graded Materials with Coatings (코팅 경사기능 재료의 균열전파에 관한 평가)

  • Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.25-29
    • /
    • 2008
  • Recently, new functionally graded material(FGM) that has a spatial variation in composition and properties is developed because of its good quality. This material yields the demands for resistance to corrosion and high temperature in turbine blade, wear resistance as in gears and high strength machine parts. Especially coating treatment in FGM surface brings forth a mechanical weak at the interface due to discontinuous stress resulting from a steep material change. It often, leads cracks or spallation in a coating area around an interface. The behavior of propagation cracks in FGMs was here investigated. The interface stresses were reduced because of graded material properties. Also graded material parameter with exponential equation was founded to influence the stress intensity factor. And the resistance curve with FGM coating was slightly increased.

Mass-production of WS$_2$ Solid Lubricant and Its applications (WS$_2$ 고체윤활제의 양산 및 적용)

  • 신동우;최인혁;윤대현;김경도
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.221-226
    • /
    • 1998
  • The processing conditions for the mass production of platelet WS$_2$ lubricant powder were optimized. The mixture of tungsten and sulfur powders was sealed in a vacuum of 10$^{-3}$ torr and heat-treated at 850$\circ$C for 2 h. The internal pressure of reaction chamber was maintained at certain level by controlling the release valve automatically. The reaction product was the platelet WS$_2$ powder with an average size of 15 $\mu$m. The synthesized WS$_2$ powder was then coated on the wiper-blade of automobiles and the commercial deep-grooved ball bearing using wet and dry coating methods, respectively. High lubricity and wear resistance of wet coated wiper-blade were confirmed by the life test of 70,000 cycles. The life-time of the ball bearing assembled after WS$_2$ coating onto each part increased 50 times compared to the non-coated ball bearing.

  • PDF

Structural Characteristics of Spray-coated Poly (vinylidene fluoride) Thin Films Prepared with Different Organic Solvents

  • Jeong, Nak-Cheon;Im, Yeong-Taek;Lee, Seon-U;Sin, Baek-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.392.2-392.2
    • /
    • 2014
  • Poly (vinylidene fluoride) thin films were deposited by a spray-coating technology. Two organic solvents with different boiling point were used to prepare the mixture solution for spray coating process: N-Methylpyrrolodone ($B.P.=202^{\circ}C$); Tetrahydrofuran ($B.P.=66^{\circ}C$). Post-deposition annealing temperature was varied for the spray-coated Poly(vinylidene fluoride) thin films. Structural characteristics of the thin films were comparatively investigated by FT-IR and XRD in relation with the organic solvent and post-deposition annealing temperature.

  • PDF