• Title/Summary/Keyword: Coating Layer

Search Result 2,283, Processing Time 0.029 seconds

Parameter Analysis for the Lateral Thickness of the Coated Layer to Improve Product Quality in Large Area Roll-to-Roll Slot-Die Coating Process (대면적 롤투롤 슬롯-다이 코팅의 횡 방향 두께 품질 개선을 위한 공정 파라미터 분석)

  • Park, Janghoon;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.159-166
    • /
    • 2015
  • Slot-die coating is well known technique to guarantee a uniformly coated layer and is compatible with roll-to-roll process. In actual roll-to-roll slot-die coating process, the lateral difference of coated layer thickness is observed. An experimental study was performed to improve the coating quality. Coating speed and coating gap were selected as the experimental factors. A full factorial, statistical method was conducted to optimize the process conditions. Based on the results of repeated experiment, the lowest deviation of lateral thickness (700 nm, <10%) was achieved at 10 m/min coating speed and $300{\mu}m$ coating gap. This result has significance because such optimized process guideline can be utilized with all process improvement in various coating applications.

Improving Gas Barrier Property of Polymer Based Nanocomposites Using Layer by Layer Deposition Method for Hydrogen Tank Liner

  • Lee, Suyeon;Han, Hye Seong;Seong, Dong Gi
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.121-126
    • /
    • 2022
  • Owing to advantages of polymeric materials for hydrogen tank liner like light-weight property and high specific strength, polymer based composites have gained much attention. Despite of many benefits, polymeric materials for fuel cell tank cause problems which is critical to applications as low gas barrier property, and poor processability when adding fillers. For these reasons, improving gas barrier property of polymer composites is required to study for expanding application fields. This work presents impermeable polymer nanocomposites by introducing thin barrier coating using layer by layer (LBL) deposition method. Also, bi-layered and quad-layered nanocomposites were fabricated and compared for identifying relationship between deposition step and gas barrier property. Reduction in gas permeability was observed without interrupting mechanical property and processability. It is discussed that proper coating conditions were suggested when different coating materials and deposition steps were applied. We investigated morphology, gas barrier property and mechanical properties of fabricated nanocomposites by FE-SEM, Oxygen permeation analyzer, UTM, respectively. In addition, we revealed the mechanism of barrier performance of LBL coating using materials which have high aspect ratio.

Preparation of silver stabilizer layer on coated conductor by continuous dip coating method using organic silver complexes (유기 은 착체 화합물을 코팅용액으로 사용하여 연속적인 담금코팅방법에 의한 은 안정화층 제조)

  • Lee, Jong-Beom;Kim, Ji-Cheol;Park, Sin-Keun;Kim, Byeong-Joo;Kim, Jae-Geun;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Silver stabilizing layer of coated conductor has been prepared by dip coating method using organic silver complexes containing 10 wt% silver as a starting material. Coated silver complex layer was dried in situ with hot air and converted to crystalline silver by post heat treatment in flowing oxygen atmosphere. A dense continuous silver layer with good surface coverage and proper thickness of 230 nm is obtained by multiple dip coatings and heat treatments. The film heat treated at $500^{\circ}C$ showed good mechanical adhesion and crystallographic property. The interface resistivity between superconducting YBCO layer and silver layer prepared by dip coating was measured as $0.67\;{\times}\;10^{-13}\;{\Omega}m^2$. Additional protecting copper layer with the thickness of $20\;{\mu}m$ was successfully deposited by electroplating. The critical current measured with the specimen prepared by dip coating and sputtering on same quality YBCO layer showed similar value of ~140 A and proved its ability to replace sputtering method for industrial production of coated conductor.

Finite Element Analysis of Powdering of Hot-dip Galvannenled Steel using Damage Model (합금화 용융아연 도금강판의 가공시 손상모델을 이용한 도금층 파우더링에 관한 유한요소 해석)

  • Kim, D.W.;Kim, S.I.;Jang, Y.C.;Lee, Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.215-222
    • /
    • 2007
  • Coating of Hot-dip galvannealed steel consists of various Fe-Zn intermetallic compounds. Since the coating is hard and there for is very brittle, the surface of steel sheet is easy to be ruptured during second manufacturing processing. This is called as powdering. In addition, forming equipment might be polluted with debris by powdering. Therefore, various research have been carried out to prohibit powdering fur improving the quality of GA steel. This paper carried out finite element analysis combined with damage model which simulate the failure of local layer of hot-dip galvannealed steel surface during v-bending test. Since the mechanical property of intermetallic compound was unknown exactly, we used the properties calculated from measurements. The specimen was divided into substrate, coating layer and interface layer. Local failure at coating layer or interface layer was simulated when elemental strain reached a prescribed strain.

  • PDF

Development of Amorphous Iron Based Coating Layer using High-velocity Oxygen Fuel (HVOF) Spraying (철계 비정질 분말을 활용한 초고속 용사 코팅층 개발)

  • Kim, Jungjoon;Kim, Song-Yi;Lee, Jong-Jae;Lee, Seok-Jae;Lim, Hyunkyu;Lee, Min-Ha;Kim, Hwi-Jun;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.483-490
    • /
    • 2021
  • A new Fe-Cr-Mo-B-C amorphous alloy is designed, which offers high mechanical strength, corrosion resistance as well as high glass-forming ability and its gas-atomized amorphous powder is deposited on an ASTM A213-T91 steel substrate using the high-velocity oxygen fuel (HVOF) process. The hybrid coating layer, consisting of nanocrystalline and amorphous phases, exhibits strong bonding features with the substrate, without revealing significant pore formation. By the coating process, it is possible to obtain a dense structure in which pores are hardly observed not only inside the coating layer but also at the interface between the coating layer and the substrate. The coating layer exhibits good adhesive strength as well as good wear resistance, making it suitable for coating layers for biomass applications.

Influence of Base Paper Properties on Coating Penetration

  • Kim, Bong-Yong;Bousfield, Douglas W.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2003.11a
    • /
    • pp.148-153
    • /
    • 2003
  • The influence of sizing, fiber and pigment type on coating penetration, using commercial paper and two types of handsheets as the base paper which were prepared from thermomechanical pulp(TMP) and hardwood bleached kraft pulp(KP) sized internally with alkyl ketone dimmer(AKD), was studied in terms of characteristics of coating holdout. Laboratory rod draw down coater was used for surface sizing and coating application. Characterization of coating penetration was done by measuring the roughness of the backside of coating layer. The backside of the coating was exposed by dissolving the fibers in a solution of cupriethylenedimine(CED). Data show that internal sizing of base paper is effective and surface sizing is more effective to prevent coating penetration. Comparing between the two types of base papers, backside roughness of coating layer of TMP sheet is much larger and sizing is more effective to reduce coating penetration than those of KP sheet. With regard to pigment type, clay is more effective than calcium carbonate for better coating holdout.

  • PDF

Studies on the Pore of Coating Layer and Printability(II) -Effects of Pigment Shape on Pore of Coating Layer- (도공층의 공극과 인쇄적성에 관한 연구(제2보) -안료의 입자형태가 미치는 영향-)

  • 김창근;이용규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.53-61
    • /
    • 2001
  • This study was carried out to evaluate the effect of coating pigments on the printability by investigating the pore structure of casting layer such as the number, size and distribution of pores and the pore rate. The coating structure was mainly determined by the interaction between pigment and binder. It means that the structure of pores was chiefly affected by the shape and size distribution of pigments and their packing rate. The physical properties of pore have close relationships with ink set-off, the speed of ink penetration and printing gloss. The results suggested that the rate and number of pores were greatly affected by the particle size distribution and shape of pigments. The rate of pore increased with the reduction of particle size distribution of pigments. Calcite was effective to improve greatly the printability of coated paper.

  • PDF

A Study on Durability of Sprayed Coating Layer in the Molten Zn-0.2% Al Alloy Bath (아연-0.2%알루미늄합금 용융도금액 중에서 용사층의 내구성에 관한 연구)

  • 강태영;임병문;최장현;김영식
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.512-519
    • /
    • 2001
  • Sink roll has been used in molten Zn-0.2%Al alloy bath of continuous galvanizing line in sinking and stabilizing process of the steel strip in molten metal bath. In this process, although the scraper scraps off the sink roll surface, the dross compounds is builded up on the sink roll surface and the life time of the sink roll is shorten by the dross compounds. The present study was investigated the application of the spray coating layer on sink roll body for improving durability In molten Zn-0.2%Al alloy. Through the durability tests in molten Zn-0.2%Al alloy with various ceramic and cermet coating layer, the optimum bond and top coating material was obtained. As the results, the system of STS430F base metal, WC-l7Co bond and $ZrO_2-SiO_2$ top coating was clarified to be the best quality of durability in molten Zn-0.2%Al alloy.

  • PDF

Frictional characteristics of coating layer in diesel engine piston ring (디젤엔진 피스톤 링 코팅 층의 마찰특성)

  • Jang, J.H.;Joo, B.D.;Lee, H.J.;Kim, E.H.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.294-297
    • /
    • 2009
  • The frictional behaviors of Cermets/Cr-Ceramics and Cu-Al coatings of piston ring were investigated. Friction tests were carried out by pin-on-disk test and materials properties of coating layer were analyzed by nano indentation tester. Higher friction coefficient was obtained at harder coating with rougher surface. In case of hard-coating, the scratch depth, width and pile-up height had close relationship with indentation hardness. So the scratch width, depth and pile-up height increases with decreasing friction coefficient. But in case of soft-coating, the friction coefficients are strongly dependent on the morphological characteristics after nano scratching more than indentation hardness.

  • PDF

A study on the mechanical properties of TiN/DLC based functionally graded coatings

  • Song, Young-Sik;Kim, J.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.59-59
    • /
    • 2003
  • In recent, various functional coatings on artificial tooth implants have been conducted to enhance the bonding strength between implants and bones. Despite of these efforts, some previous reports argued that an adhesion strength between titanium implant and the final coatings like hydroxyapatite(HA) is weaker than the strength between coating and bone. In order to increase the adhesion force between the final coating and implant surface, TiN/DLC based functionally graded coating, which has higher mechanical strength than the titanium implant, was applied as a middle layer between titanium implant and final coating. Particularly we finally coated a biocompatible hydroxyapatite film on the DLC layer and examined the mechanical properties. As a result, TiN/DLC based functionally graded coating showed the higher adhesion strength compared with hydroxyapatite single layer coating on the titanium implant.

  • PDF