• Title/Summary/Keyword: Coating Flow

Search Result 402, Processing Time 0.033 seconds

WO3 Fabrication and Thermal Spray Coating of WC-Co using Recycled Ammonium Paratungstate (APT) (재활용 APT를 이용한 WO3 제조와 WC-Co 의 용사코팅)

  • Chung, J. K.;Kim, S. J.;On, J. H.;Moon, H. S.;Pee, J. H.;Ha, T. K.;Park, S. Y.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.287-292
    • /
    • 2015
  • The possibility of chemical precipitation for recycled ammonium paratungstate (APT) was studied. WO3 particles were synthesized by chemical precipitation method using a 1:2 weight ratio of APT:DI-water. At the 500℃ sintering temperature, the X-ray diffraction results showed that APT completely decomposed to WO3. For the granulated powder WC-Co, vacuum heat treatment at proper temperatures increases tap density and flow-ability. Hardness of the WC-Co thermal spray coating layer was measured in the range HV 831~1266. Spray conditions for the best characteristic values were an oxygen flow rate=1500 scfh, a fuel flow rate = 5.25gph and a gun distance = 320mm.

Effect of flow velocity on corrosion rate and corrosion protection current of marine material (해양 금속재료의 부식속도와 방식전류에 미치는 유속의 영향)

  • Lee, Seong Jong;Han, Min Su;Jang, Seok Ki;Kim, Seong Jong
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.226-231
    • /
    • 2015
  • In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

Thermally Curable Organic-inorganic Hybrid Coatings on Ophthalmic Lenses by the Sol-Gel Method (졸-겔법에 의한 안경렌즈의 열경화형 유-무기 하이브리드 코팅)

  • Yu Dong-Sik;Lee Ji-Ho;Ha Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.465-470
    • /
    • 2006
  • Coating are needed on ophthalmic lenses to enhance both the mechanical durability of the relatively soft plastic surface and the optical performance of lenses. Organic-inorganic hybrid materials as molar ratio of 3-glycidoxypropyltrimethoxysilane(GPTS), methyltrimethoxysilane(MTMS) and tetraethyl orthosilicate(TEOS) were used to improve the surface characteristics and the optical properties on allyl diglycol carbonate lenses. Coating for these plastics were at $140^{\circ}C$ for 4hrs, applied using the sol-grl process flow-coating technique. The coated lens properties of transmittance, adhesion, pencil hardness, abrasion resistance, hot water resistance and chemical resistance were investigated. The optimum properties was obtained when the ratio of GPTS : MTMS : TEOS was 1:1:2, respectively.

  • PDF

A Study on the Temperature Uniformity for the Anti-Corrosion Coating Process of Large-Sized Water Pipes (대형배관 내부식 코팅공정의 온도 균일성 향상을 위한 와류날개 형상 연구)

  • Park, Jaehyun;Park, Heesung;Kim, Sootae;Kang, Gyuongmoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.35-40
    • /
    • 2016
  • In this study, the thermal and fluid dynamic characteristics for the coating process of large-sized water pipes was studied by heating the inside of a pipe directly with a gas burner. Heat and flow analyses were performed on large pipes with various inlet shapes. Using large pipes for coating was shown to be the proper shape for heating large pipes uniformly. This type has a screw with a diameter of 200 mm installed at the inlet to provide a rotational motion to the heating air. The rotational motion resulted in a uniform temperature distribution that ranged from $289.1^{\circ}C$ to $352.1^{\circ}C$ The optimized geometric configuration of the inlet of the pipe successfully and uniformly enhanced the thermal characteristics of the devised temperature limit.

Process Optimization for Thermal-sprayed Ni-based Hard Coating by Design of Experiments (실험계획법에 의한 니켈기 경질 용사코팅의 최적 공정 설계)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.89-94
    • /
    • 2009
  • In this work, the optimal process has been designed by $L_9(3^4)$ orthogonal array and analysis of variance(ANOVA) for thermal-sprayed Ni-based hard coating. Ni-based hard coatings were fabricated by flame spray process on steel substrate. Then, the hardness test and observation of microstructure of the coatings were performed. The results of hardness test were analyzed by ANOVA. The ANOVA results demonstrated that the acetylene gas flow had the greatest effect on hardness of the coatings. The oxygen gas flow was found to have a neglecting effect. From these results, the optimal combination of the flame spray parameters could be predicted. The calculated hardness of the coatings by ANOVA was found to lie close to that of confirmation experimental result. Thus, it was considered that design of experiments design using orthogonal array and ANOVA was useful to determine optimal process of thermal-sprayed Ni-based hard coating.

  • PDF

Protective SiC Coating on Carbon Fibers by Low Pressure Chemical Vapor Deposition

  • Bae, Hyun Jeong;Kim, Baek Hyun;Kwon, Do-Kyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.702-707
    • /
    • 2013
  • High-quality ${\beta}$-silicon carbide (SiC) coatings are expected to prevent the oxidation degradation of carbon fibers in carbon fiber/silicon carbide (C/SiC) composites at high temperature. Uniform and dense ${\beta}$-SiC coatings were deposited on carbon fibers by low-pressure chemical vapor deposition (LP-CVD) using silane ($SiH_4$) and acetylene ($C_2H_2$) as source gases which were carried by hydrogen gas. SiC coating layers with nanometer scale microstructures were obtained by optimization of the processing parameters considering deposition mechanisms. The thickness and morphology of ${\beta}$-SiC coatings can be controlled by adjustment of the amount of source gas flow, the mean velocity of the gas flow, and deposition time. XRD and FE-SEM analyses showed that dense and crack-free ${\beta}$-SiC coating layers are crystallized in ${\beta}$-SiC structure with a thickness of around 2 micrometers depending on the processing parameters. The fine and dense microstructures with micrometer level thickness of the SiC coating layers are anticipated to effectively protect carbon fibers against the oxidation at high-temperatures.

Fabrication of Fine Organic Thin-Film Stripes Using a Hydrophobic Needle (소수성 Needle을 이용한 미세 유기 박막 Stripe 제작)

  • Kim, Jongmyeong;Lee, Jinyoung;Shin, Dongkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.73-78
    • /
    • 2020
  • There appears lateral capillary force in a hydrophilic flat needle employed for the fabrication of fine organic thin-film stripes, bringing in an increase of the stripe width. It also causes the stripe thickness to increase with increasing coating speed, which is hardly observed in a normal coating process. Through computational fluid dynamics (CFD) simulations, we demonstrate that the lateral capillary flow can be substantially suppressed by increasing the contact angle of the needle end. Based on the simulation results, we have coated the outer surface of the flat needle with a hydrophobic material (polytetrafluoroethylene (PTFE) with the water contact angle of 104°). Using such a hydrophobic needle, we can suppress the lateral capillary flow of an aqueous poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS) to a great extent, rendering the stripe narrow (63 ㎛ at 30 mm/s). Consequently, the stripe thickness is decreased as the coating speed increases. To demonstrate its applicability to solution-processable organic light-emitting diodes (OLEDs), we have also fabricated OLED with the fine PEDOT: PSS stripe and observed the strong light-emitting stripe with the width of about 68 ㎛.

The Transient Response Characteristics of Compliant Coating to Pressure Fluctuations

  • Lee In-Won;Chun Ho-Hwan;Kim Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.533-544
    • /
    • 2006
  • The amplitude and phase lag of surface deformation were determined for a compliant coating under the action of turbulent pressure fluctuations. For this purpose, pressure fluctuations were measured experimentally. The amplitude and duration of coherent wave train of pressure fluctuations were investigated using digital filtration. The transient response was calculated for stabilization of forced oscillations of the coating in approximation of local deformation. The response of coating was analyzed with considerations of its inertial properties and limited duration of coherent harmonics action of pressure fluctuations. It is shown that a compliant coating interacts not with the whole spectrum of pressure fluctuations, but only with a frequency range near the first resonance. According to the analysis, with increasing elasticity modulus of the coating material E, deformation amplitude decreases as 1/E, and dimensionless velocity of the coating surface decreases as $1/\sqrt{E}$. For sufficiently hard coatings, deformation amplitude becomes smaller than the thickness of viscous sublayer, while surface velocity remains comparable to vertical velocity fluctuations of the flow.

FGM-TBC의 열충격 특성에 미치는 진공 플라즈마 용사조건의 영향

  • Jeong, Yeong-Hun;Byeon, Eung-Seon;Nam, Uk-Hui;Lee, Gu-Hyeon;Gang, Jeong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.524-524
    • /
    • 2012
  • Thermal Barrier Coating (TBC)은 미사일, 로켓발사체와 같이 고온에 노출되는 장비를 열로부터 보호하기 위한 코팅이다. 일반적인 Thermal Barrier Coating (TBC)은 모재와 코팅층간의 낮은 접합력과 높은 열충격으로 인한 박리가 많이 나타난다. 그래서 접합력을 높이고, 열충격을 줄이기 위해 모재와 코팅층 사이에 본드코팅층을 만든 Duplex - Thermal Barrier Coating (Duplex-TBC)이 개발되었다. 그러나 Duplex - Thermal Barrier Coating (Duplex-TBC)은 금속재료인 본드코팅층과 세라믹재료인 탑코팅층 사이에서 박리가 많이 발생한다. 이러한 문제점을 해결하기 위해 두 가지 분말을 동시에 코팅하여 본드코팅과 탑코팅의 경계가 없는 Functional Gradient Material - Thermal Barrier Coating (FGM-TBC)의 연구가 필요하다. 본 연구에서는 Functional Gradient Material - Thermal Barrier Coating (FGM-TBC)의 열충격 특성에 미치는 진공 플라즈마 용사 조건의 영향을 조사하였다. Functional Gradient Material - Thermal Barrier Coating (FGM-TBC)는 진공 플라즈마 용사장치를 사용하여 Cu-Cr 합금위에 코팅하였다. 거리, Carrier gas flow, 그리고 챔버 내부의 압력을 달리하여 제조하였다. 사용한 분말은 본드코팅용으로 Amdry 962와 내열 세라믹코팅을 위해 204NS를 사용하였고, 각각 분말 공급조건을 조절하여 두 분말의 비율을 달리하였다. 제조한 Functional Gradient Material - Thermal Barrier Coating (FGM-TBC) 코팅은 전기로에서 50분간 가열한 후, 수조에서 10분간 냉각하는 열충격 실험을 통해 열차폐 성능을 평가 하였다. 이러한 과정에서 진공 플라즈마 용사 조건 및 FGM 조성과 비율이 내열충격 특성에 미치는 영향을 미세조직학적 관점에서 고찰하였다.

  • PDF

Analysis of Wave Decay Characteristics of Viscoelastic Compliant Coating (점탄성 유동벽면의 파동 감쇠 특성 해석)

  • Kulik Victor M.;Jung, Kwang-Hyo;Chun Ho-Hwan;Lee, In-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1155-1163
    • /
    • 2006
  • Calculation was carried out for phase velocity and deformation wave decay in a layer of viscoelastic material fixed tightly on the solid substrate. Analysis has been performed regarding the inner structure of the wave, i.e., the proportions between the vertical and horizontal displacements and their profiles. The wave characteristics depend strongly on media compressibility factor. The effect of viscous losses on parameters of the main oscillation mode was studied in detail. Results were compared with the model of coating with local deformation. A new experimental approach was made in order to measure such wave properties of a compliant coating as the dependency of deformation wave velocity on frequency and decay factor was made. The method for estimation of coating parameters enabling the drag reduction in turbulent flow was then refined.