• Title/Summary/Keyword: Coastal sea front

Search Result 129, Processing Time 0.032 seconds

On Characteristics of Sea Breeze Front observed in Pusan Coastal Area, Korea (부산연안역에서 관측된 해풍전선의 특성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.629-636
    • /
    • 1997
  • We have analyzed focusing on the characteristics, speed and width of sea breeze front in Pusan coastal area using the meteorological data observed at Kimhae air force meteorological station because the presence of the front has Important effects on the dInstributlon of air pollution. The inland penetration of sea breeze front was recognized by steep variation of meteorological parameters(wind direction, wind speed, temperature, dew point temperature, air pressure, relative humidity) before and after its passage and the variation of $SO_2$ concentration, the speed and width of the sea breeze front was 2.07m/s and 217m, respectively. The structure and inland penetration of sea breeeze front should be taken into account whenever a model is to be compared with detailed field measurements.

  • PDF

Seasonal Variation of Coastal Front by Numerical Simulation in the Southern Sea of Korea (수치모델을 이용한 한국 남해안 전선의 계절변동)

  • Bae, Sang-Wan;Kim, Dong-Sun
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1141-1149
    • /
    • 2011
  • The three-dimensional hydrodynamic model was simulated to understand coastal sea front of formation and seasonal variation in the Southern Sea of Korea. In this study, we used to concept of stratification factor, to realize seasonal distribution of stratification coefficient which of seasonal residual flow, considered with, tide, wind and density effect. Tidal current tends to flow westward during the flood and eastward during ebb. The current by the wind stress showed to be much stronger the coastal than the offshore area in the surface layer. And the current by the horizontal gradient of water density showed to be relatively weak in the coastal area, with little seasonal differences. On the other hand, the flow in the offshore area showed results similar to that of the Tsushima Warm Current. The stratification factor (SHv) was calculated by taking into account the total flow of tide, wind and density effect. In summer, the calculated SHv distribution ranged from 2.0 to 2.5, similar to that of the coastal sea front. The horizontal temperature gradient showed to be strong during the winter, when the vertical stratification is weak. On the other hand, the horizontal gradient became weak in summer, during which vertical stratification is strong. Therefore, it is presume that the strength of vertical stratification and the horizontal temperature gradient affect the position of the coastal sea front.

A Study on the GIS for The Sea Environmental Management II (- Developing a Line Density Algorithm for The Quantification to the Sea Surface Temperature Distribution - ) (GIS을 활용한 해양환경관리에 관한 연구 II (해수면 수온분포의 정량화를 위한 선 밀도 알고리즘 개발))

  • Lee, Hyoung-Min;Park, Gi-Hark
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.61-76
    • /
    • 2006
  • A Line Density algorithm was developed to quantify the sea surface temperature distribution using NOAA Sea Surface Temperature(SST) data and Geographic Information Systems(GIS), In addition, a GIS based automation model was designed to extract the Line Density Indices were determined by applying K-means Cluster. SST data in terms of March to May obtained on the coastal area of the Uljin from 2001 to 2004 in spring were used to make two data sets of average sea water temperature map in terms of year as well as month. From the result it was formed that water temperature gradient in April was the strongest among the other months, In particular very strog formation of oceanic front as well as temperature gradients were observed in front of the coastal area around Wonduk and Jukbyeon countries. Because those coastal area is a confront zone of two cold and a warm. It is expected that the development of a Line Density Algorithm would contribute to quantify of the SST for the research of Sea Surface Front(SSF) related to marine life management and the sea environmental conservation.

Phytoplankton Distribution in the Eastern Part of the Yellow Sea by the Formation of Tidal Front and Upwelling during Summer (황해 동부 해역에서 하계에 조석전선과 용승에 의한 식물플랑크톤군집 분포)

  • Lee, Young-Ju;Choi, Joong-Ki;Shon, Jae-Kyoung
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.111-123
    • /
    • 2012
  • To understand the phytoplankton community in the eastern part of the Yellow Sea (EYS), in the summer, field survey was conducted at 25 stations in June 2009, and water samples were analyzed using a epifluorescence microscopy, flow cytometry and HPLC method. The EYS could be divided into four areas by a cluster analysis, using phytoplankton group abundances: coastal mixing area, Anma-do area, transition water, and the central Yellow Sea. In the coastal mixing area, water column was well mixed vertically, and phytoplankton was dominated by diatoms, chrysophytes, dinoflagellates and nanoflagellates, showing high abundance ($>10^5\;cells\;l^{-1}$). In Anma-do coastal waters characterized by high dominance of dinoflagellates, high phytoplankton abundance and biomass separated from other coastal mixing area. The southeastern upwelling area was expanded from Jin-do to Heuksan-do, by a tidal mixing and coastal upwelling in the southern area of Manjae-do, and phytoplankton was dominated by benthic diatoms, nanoflagellates and Synechococcus group in this area. Phytoplankton abundance and biomass dominated by pico- and nanophytoplankton were low values in the transition waters and the central Yellow Sea. In the surface of the central Yellow Sea, high dominance of photosynthetic pigments, 19'-hexanoyloxyfucoxanthin and zeaxanthin implies that haptophytes and cyanobacteria could be the dominant group during the summer. These results indicate that the phytoplankton communities in the EYS were significantly affected by the formation of tidal front, thermal stratification, and coastal upwelling showing the differences of physical and chemical characteristics during the summer.

An Unusual Coastal Environment and Cochlodinium polykrikoides Blooms in 1995 in the South Sea of Korea

  • Kang, Young-Shil;Kim, Hak-Gyoon;Lim, Wol-Ae;Lee, Chang-Kyu;Lee, Sam-Geun;Kim, Sook-Yang
    • Journal of the korean society of oceanography
    • /
    • v.37 no.4
    • /
    • pp.212-223
    • /
    • 2002
  • Cochlodinium polykrikoides bloom in 1995 was studied with a focus on an unusual coastal environment in the South Sea of Korea. Data on temperature, salinity, and zooplankton biomass during 1965-1998 and nutrients during 1990-1998 and chlorophyll-a during 1995-1998 were used in this study. These data were obtained from the serial oceanographic observations in Korean waters carried out by the National Fisheries Research and Development Institute. In 1995 the C. polykrikoides bloom began in the coastal area around Narodo Island in August and consequently occurred to the whole coastal area of the South and East Seas of Korea. During June-October 1995, the coastal environment was unusual compared with the long-term means during 1965-1998. In June 1995, sea surface temperature was 1-2$^{\circ}C$ warmer than in other years in all coastal areas, while salinity was high only to the east of Jeju Island. In August 1995, a strong coastal front appeared inshore of a line between Jeju and Tsushima Islands. In particular, a strong coastal front which showed the characteristics of upwelling front occurred in the coastal area around Narodo and Sorido Islands, not only because of a strong intrusion of the Tsushima Warm Current but also because of the upwelling of cold bottom water. Salinity was low in the neighboring waters of western side of Jeju Island. Nutrients and chlorophyll-a were high in the inshore area between Narodo and Sorido Islands in 1995 in contrast with the other years and areas. Zooplankton showed an unusually high abundance in the coastal area in October 1995. We conclude that the Tsushima Warm Current strongly influenced the South Sea of Korea in 1995 and created strong upwelling front bordering cold upwelled water in the coastal area around Narodo and Sorido Islands. It leads us that these physical structures introduce the favorable environment for the development of C. polykrikoides blooms. We suggest that C. polykrikoides has a bio-physical tolerance of high shear and stress and prefers frontal and upwelling relaxed areas as its habitat. We also find that nutrients were not supplied to the coastal area from the offshore where a low salinity water mass with high nutrients appeared around Jeju Island. Because the strong upwelling front protect the reach of offshore low saline water mass. The main source of nutrients was the upwelled water mass in the coastal area of Wando-Narodo-Sorido.

Water Quality Characteristics Along Mid-western Coastal Area of Korea (한국 서해 중부 연안역의 수질환경 특성)

  • Lim, Dhong-Il;Kang, Mi-Ran;Jang, Pung-Guk;Kim, So-Young;Jung, Hoi-Soo;Kang, Yang-Soon;Kang, Young-Shil
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.379-399
    • /
    • 2008
  • Spatial-temporal variations in physiochemical water qualities (temperature, salinity, DO, SPM, POC and nutrients) of surface and bottom waters were investigated along the mid-western coastal area (Taean Peninsula to Gomso Bay) of Korea. Spatial distribution patterns of temperature and salinity were mostly controlled by the physical mixing process of freshwater from Geum River and/or Gyunggi Bay with nearby coastal water. A strong tidal front is formed off Taean Peninsula during spring and summer. Seasonal variations in nutrient concentrations, lower in spring and summer and higher in fall and winter, are primarily regulated by magnitude of phytoplankton occurrence rather than freshwater loadings into the bay. Based on seasonal and spatial variability of physicochemical parameters, water quality of the study area can be divided into four water masses; Gyunggi Bay-influenced Water Mass (GBWM), Geum River-influenced Water Mass (GRWM), Yellow Sea Bottom Cold Water Mass (YSBCWM) and Cheonsu Bay Water Mass (CBWM). Water quality of the GBWM (Taean Peninsula coastal area), which has relatively low salinity and high concentrations of nutrients, is strongly controlled by the Gyunggi Bay coastal water, which is under influence of the Han River freshwater. In this water mass, the mixed layer is always developed by strong tidal mixing. As a result, a tidal front is formed along the offshore boundary of the mixed layer. Such tidal fronts probably play an important role in the distribution of phytoplankton communities, SPM and nutrients. The GRWM, with low salinity and high nutrients, especially during the flood summer season, is closely related to physiochemical properties of the Geum River. During the flood season, nutrient-enriched Geum River water mass extends up to 60 km away from the river mouth, potentially causing serious environmental problems such as eutrophication and unusual and/or noxious algal blooms. Offshore (<$30{\sim}40m$ in water depth) of the study area, YSBCWM coupled with a strong thermocline can be identified in spring-summer periods, exhibiting abundant nutrients in association with low temperature and limited biological activity. During spring and summer, a tidal front is formed in a transition zone between the coastal water mass and bottom cold water mass in the Yellow Sea, resulting in intensified upwelling and thereby supplying abundant nutrients to the GBWM and GRWM. Such cold bottom water mass and tidal front formation seems to play an important role in controlling water quality and further regulating physical ecosystem processes along mid-western Korean coastal area.

Circulation in the Central South Sea of Korea in Spring 1999

  • Lee, Jae-Chul;Lee, Sang-Ho;Kim, Dae-Hyun;Son, Yong-Tae;Perkins, Henry-T.;Kim, Jeong-Chang;Pang, Ig-Chan
    • Journal of the korean society of oceanography
    • /
    • v.38 no.3
    • /
    • pp.143-155
    • /
    • 2003
  • Current and sea level were observed in spring 1999 by a bottom mounted ADCP and tide gauge in the central part of the South Sea of Korea. With respect to the front, the distribution of isotherms is prograde in the offshore region whereas that of isohalines is retrograde, especially in the coastal area. The combined effect results in shoaling of isopycnals at the front. This distribution corresponds to a westward coastal flow on the northern side of the front and the eastward Tsushima Warm Current (TWC) to the south, determined by vessel-mounted ADCP observations. The low-frequency current shows either alternating clockwise-counterclockwise rotation or else persistent eastward motion depending on the frontal motion. Fluctuations of wind, sea level and current are coherent at period of 3-4 days and show some characteristics of Ekman-like dynamics.

Analysis of Sea-breeze Frontogenesis over the Coastal Urban Area Using Urbanized MM5 (도시형 중규모기상모델을 이용한 연안도시 해풍전선 발달 분석)

  • Hwang, Mi-Kyoung;Oh, In-Bo;Kim, Yoo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.4
    • /
    • pp.416-425
    • /
    • 2011
  • To analyze the physical processes of sea-breeze development over a coastal urban area, numerical simulation for seabreeze (SB) and its frontogenesis was examined based on urbanized MM5 (uMM5) with urban canopy parameterization. On 6 August 2006, SB and its front were well developed in Busan under a weak offshore flow. As a result of wind vector, ZVB (Zero Velocity Boundary), potential temperature obtained the uMM5, at 0900 LST, SB advanced below 200 m height in the coastal areas and the internal boundary grew with the urban coastal region. At noon, the height of the SB head with updraft was approximately one and a half times (~600 m) higher than its depth in central urban. Applying the frontogenesis function, the SB structure for frontogenesis and frontolysis were complicated spatially; the dynamic effects of wind (i.e. convergence and tilting term) could play an important role in the growth of SB, especially the convergence effect.

Estimation of Wave Power in Korean Coastal Waters (파랑에너지 해석 및 가용량 평가 연구)

  • 김현주;최학선;김선경
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.107-112
    • /
    • 1998
  • The purpose of this study is to analyze the amount of available wave power and its characteristics related to the development of apractical system for ocean wave energy conversion in Korean coastal waters. The analysis method of wave power was established through comparison between theory and numerical simulation of deep sea wave by Inverse Fourier Transform with random phase method. Based on the results of comparison, wave power was estimated by use of data set from observed offshore and coastal waves and hindasted deep sea waves around the Korean peninsula. Annual mean wave power is estimated as about 1.8 ~ 7.0 kW for every metre of wave frontage at East sea, 1.5~5.3 kW at South sea and 1.0 ~ 4.1 kW at West sea, respectively. Mean wave power along deep sea front of coastal waters of Korea amounts to about 4.7 GW. Regional distribution and seasonal variation of wave power were discussed to develop practical utilization system of wave power of not so high grade of available wave power.

  • PDF

Variation of Tidal Front in the Southwestern Sea of Korea (한국 남서해역 조사전선의 변화)

  • 조양기;최병호;정홍화
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.170-175
    • /
    • 1995
  • To investigate the variation of tidal front in the southwestern sea of Korea, tidal currents were simulated. Tidal front proposed by a criterion parameter (log H/U$^3$)=1.5-2.0 was found further offshore by about 30-50 km in spring tide than in neap tide. This variation is comparable with the observed about 20-60km by satellite image of sea surface temperature (SST). Observed front by satellite is further offshore by about 10-30km than calculated region in southwestern region.

  • PDF