• 제목/요약/키워드: Coastal monitoring

검색결과 588건 처리시간 0.024초

SeaWiFS 밴드역에 의한 연안해역의 엽록소 밴드비율 알고리듬 검증 (The Validation of chlorophyll-a band ratio algorithm of coastal area using SeaWiFS wavelength)

  • 정종철;유신재
    • 대한원격탐사학회지
    • /
    • 제16권1호
    • /
    • pp.37-45
    • /
    • 2000
  • 해양관측위성으로 1997년에 발사된 SeaWiFS 센서는 해양의 엽록소 분포와 대기환경 등 다양한 지구관측 자료를 제공하고 있고, 현재까지 수신된 많은 자료는 해양뿐만 아니라 육상관측에도 이용되고 있다. 하지만, SeaWIFS 센서는 1 km의 공간해상력으로 인해 연안해역의 관측이 어렵고, 연안역에서의 대기보정 문제가 아직 정립되지 않아 연안해역의 관측에는 아직 활발히 적용되지못하다. 특히, 서.남해 연안해역은 부유사 농도가 높고, 육상에서 비롯되는 용존유기물의 흡광으로 엽록소 분포를 분석하기에 적합한 알고리듬이 개발되지 못하고 있는 실정이다. 본 연구에서는 해양의 엽록소 농도분포를 분석하는데 활용되어온 경험적인 알고리듬을 바탕으로 연안해역의 엽록소 분포를 분석하기에 적합한 경험식을 도출하였으며, 이러한 경험식을 도출하는 과정에서 연안해역의 엽록소 농도 관측을 위해서는 레드영역의 밴드 (665nm)가 활용되어야 한다는 결론을 얻었다.

UAV-based Land Cover Mapping Technique for Monitoring Coastal Sand Dunes

  • Choi, Seok Keun;Kim, Gu Hyeok;Choi, Jae Wan;Lee, Soung Ki;Choi, Do Yoen;Jung, Sung Heuk;Chun, Sook Jin
    • 한국측량학회지
    • /
    • 제35권1호
    • /
    • pp.11-22
    • /
    • 2017
  • In recent years, coastal dune erosion has accelerated as various structures have been developed around the coastal dunes. A land cover map should be developed to identify the characteristics of sand dunes and to monitor the condition of sand dunes. The Korean Ministry of Environment's land cover maps suffer from problems, such as limited classes, target areas, and durations. Thus, this study conducted experiments using RGB and multispectral images based on UAV (Unmanned Aerial Vehicle) over an approximately one-year cycle to create a land cover map of coastal dunes. RF (Random Forest) classifier was used for the analysis in accordance with the experimental region's characteristics. The pixel- and object-based classification results obtained by using RGB and multispectral cameras were evaluated, respectively. The study results showed that object-based classification using multispectral images had the highest accuracy. Our results suggest that constant monitoring of coastal dunes can be performed effectively.

Wind power spectra for coastal area of East Jiangsu Province based on SHMS

  • Wang, Hao;Tao, Tianyou;Wu, Teng
    • Wind and Structures
    • /
    • 제22권2호
    • /
    • pp.235-252
    • /
    • 2016
  • A wind velocity power spectrum (WVPS) with high fidelity is extremely important for accurate prediction of structural buffeting response. WVPS heavily depends on the geographical locations, local terrains and topographies. Hence, field measurement of wind characteristics may be the unique way to obtain the accurate WVPS for a specific region. In this paper, a systematic analysis and discussions of existing WVPSs were performed. Six recorded strong wind data from the structural health monitoring systems (SHMS) of Runyang Suspension Bridge (RSB) and Sutong Cable-stayed Bridge (SCB) in Jiangsu Province of China were selected for analysis. The measured and pre-processed wind velocity data was first transformed from time domain to frequency domain to obtain the measured spectrum. The spectrum for each strong wind was then fitted using the nonlinear least square method and compared with both the fitted spectrum from statistical analysis and the recommended spectrum in specifications. The modified Kaimal spectrum was proved to be the "best" choice for the coastal area of East Jiangsu Province. Finally, a suitable WVPS formula fit for the coastal area of East Jiangsu Province was presented based on the modified Kaimal spectrum. Results in this study provide a more accurate and reliable WVPS for wind-resistant design of engineering structures in the coastal area of East Jiangsu Province.

Overfishing and recent risk for collapse of fishery in coastal Mediterranean lagoon ecosystem (Karavasta lagoon, southeastern Adriatic sea)

  • Spase Shumka;Yukio Nagahama;Sarjmir Hoxha;Koji Asano
    • Fisheries and Aquatic Sciences
    • /
    • 제26권4호
    • /
    • pp.294-303
    • /
    • 2023
  • Beside that the fish species and their sub-populations are highly important as a keystone species in the coastal and marine ecosystem, there are very few studies on their presence, distribution and temporal variations within and around the lagoon ecosystems in Albania. This paper provides an updated review on the life cycle, fishery, exploitation state and management of the main species that are subject of commercial fishing in the Karavasta lagoon, southeastern Adriatic coast of Albania. Due to the fact that lagoons represent a continuum between continental and marine aquatic ecosystems they play a crucial role in species life cycles. Further on in the circumstances of rapid utilizations and environmental changes, anomalies in salinity and temperatures, accelerated anthropogenic influences their rate of vulnerability is highly increased. Following the requirements of the Water Framework Directive, transitional water, coastal lagoons and estuaries there is a need for urgent monitoring and management approaches. The commercial species include: European eel (Anguilla anguilla), species of Family Mugilidae (Mugil cephalus, Liza ramada, Liza salienes and Chelon labrosus), Seabream (Sparus aurata), Seabass (Dincentrarchus labrax), etc. Fish productivity is oscillating from maximum value of 61.95 kg/ha is recorded in period of 1975-80 and lower value of 31 kg/ha in year 2020. Our study highlights importance of fish and fishery long-term monitoring, and contributes to understand the driving factors in productivity, migration patterns and species ecology in the vital coastal ecosystems.

해양모니터링 자료의 장기결측 보충 기법 (Long-gap Filling Method for the Coastal Monitoring Data)

  • 조홍연;이기섭;이욱재
    • 한국해안·해양공학회논문집
    • /
    • 제33권6호
    • /
    • pp.333-344
    • /
    • 2021
  • 해양모니터링 자료에서 빈번하게 발생하는 장기결측구간의 자료 보충기법을 제안한다. 제안하는 방법은 결측구간의 장기변동 추세 성분과 단기변동 잔차성분을 추정하여 조합하는 방식으로 결측구간의 미지 정보를 추정한다. 이 방법을 이용하여 울릉도 해상부이 자료의 수온 항목, 약 1개월 정도의 장기결측 구간의 자료를 보충하였으며, 부이에서 관측하는 자료 항목에 대해서도 결측 보충을 수행하였다. 보충된 자료는 항목에 따라 차이를 보이지만 변동양상이 적절하게 재현되는 것으로 파악되었다. 이 방법은 추세추정과 잔차 반영에 따른 편향오차와 분산오차가 발생하지만, 장기결측으로 인한 통계적인 측도 추정의 편향오차는 크게 절감하는 것으로 파악되었다. 결측보충 모형의 추정 RMS 오차의 평균과 90% 신뢰구간은 각각 0.93, 0.35~1.95 범위이다.

Spatio-temporal Variation of Groundwater Level and Electrical Conductivity in Coastal Areas of Jeju Island

  • Lim, Woo-Ri;Park, Won-Bae;Lee, Chang-Han;Hamm, Se-Yeong
    • 한국지구과학회지
    • /
    • 제43권4호
    • /
    • pp.539-556
    • /
    • 2022
  • In the coastal areas of Jeju Island, composed of volcanic rocks, saltwater intrusion occurs due to excessive pumping and geological characteristics. Groundwater level and electrical conductivity (EC) in multi-depth monitoring wells in coastal areas were characterized from 2005 to 2019. During the period of the lowest monthly precipitation, from November 2017 until February 2018, groundwater level decreased by 0.32-0.91 m. During the period of the highest monthly precipitation, from September 2019 until October 2019, groundwater level increased by 0.46-2.95 m. Groundwater level fluctuation between the dry and wet seasons ranged from 0.79 to 3.73 m (average 1.82 m) in the eastern area, from 0.47 to 6.57 m (average 2.55 m) in the western area, from 0.77 to 8.59 m (average 3.53 m) in the southern area, and from 1.06 to 12.36 m (average 5.92 m) in the northern area. In 2013, when the area experienced decreased annual precipitation, at some monitoring wells in the western area, the groundwater level decreased due to excessive groundwater pumping and saltwater intrusion. Based on EC values of 10,000 ㎲/cm or more, saltwater intrusion from the coastline was 10.2 km in the eastern area, 4.1 km in the western area, 5.8 km in the southern area, and 5.7 km in the northern area. Autocorrelation analysis of groundwater level revealed that the arithmetic mean of delay time was 0.43 months in the eastern area, 0.87 months in the northern area, 10.93 months in the southern area, and 17.02 months in the western area. Although a few monitoring wells were strongly influenced by nearby pumping wells, the cross-correlation function of the groundwater level was the highest with precipitation in most wells. The seasonal autoregressive integrated moving average model indicated that the groundwater level will decrease in most wells in the western area and decrease or increase in different wells in the eastern area.

비디오를 이용한 하구 사주 변화 모니터링 시스템(I) - Hardware System 구축을 중심으로 - (Monitoring System of Sandbar Variation of Estuary using Video-based Technique)

  • 윤한삼;류승우;강태순
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.630-636
    • /
    • 2008
  • Monitoring the location of the shoreline and foreshore changes through the time and core tasks are carried out by coastal engineers for a wide range of research. With the advent of digital imaging technology, the shore-based video monitoring system provides many advantages than field surveys. This study presents the development and construction(installation) of video monitoring system to assist the study of coastal and shoreline dynamics and evolution, especially sandbar variation at the Nakdong river estuary. For the purpose of this study, at high building near the Dadea-po beach (St. 2) and Jinudo(island) (St. 1) foreshore region, where coastline variation is highly active, 5 video cameras installed; the coastline movement has monitored since Aug. 2007 using the systems. From the image results of video camera, the 'Spit' type sandbar appears at the foreshore region of Doyodeung and Dadea-po beach and measured the deposition process of Jinudo(island) foreshore region. As a result, the monitoring system using video-based technique built in this study would be able to identify changes in the area and width of shoreline and beach of Nakdong river estuary.

Vibration-based damage monitoring of harbor caisson structure with damaged foundation-structure interface

  • Lee, So-Young;Nguyen, Khac-Duy;Huynh, Thanh-Canh;Kim, Jeong-Tae;Yi, Jin-Hak;Han, Sang-Hun
    • Smart Structures and Systems
    • /
    • 제10권6호
    • /
    • pp.517-546
    • /
    • 2012
  • In this paper, vibration-based methods to monitor damage in foundation-structure interface of harbor caisson structure are presented. The following approaches are implemented to achieve the objective. Firstly, vibration-based damage monitoring methods utilizing a variety of vibration features are selected for harbor caisson structure. Autoregressive (AR) model for time-series analysis and power spectral density (PSD) for frequency-domain analysis are selected to detect the change in the caisson structure. Also, the changes in modal parameters such as natural frequency and mode shape are examined for damage monitoring in the structure. Secondly, the feasibility of damage monitoring methods is experimentally examined on an un-submerged lab-scaled mono-caisson. Finally, numerical analysis of un-submerged mono-caisson, submerged mono-caisson and un-submerged interlocked multiple-caissons are carried out to examine the effect of boundary-dependent parameters on the damage monitoring of harbor caisson structures.

COASTAL ENVIRONMENT MONITORING USING ADJACENT EFFECT OF RADIATION

  • Takashima, Tsutomu;Jung, Sung-Chul;Yi, San-Oh;Kim, Tu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.430-431
    • /
    • 2006
  • KOMPSAT-2 was successively launched on July 28,06. She carries Fine Spatial Resolution Sensor with three channels. It is 4m monochromatic and 1m panchromatic. The main purposes would derive fine urban map and digital elevation model(DEM).Therefore we extend to coastal environment monitoring using the adjacent effect of radiation due to an interaction of radiation between heterogeneous surface and atmosphere. With data analysis of ASTER on TERA, which is 15m resolution in visible and near infrared wavelengths, we found atmospheric aerosols were always large. Note that data analysis was limited in Nagoya bay, Lake Tahoe, California & La Pozuelos, La Picasa, Argentina. Thus this time we expect data analyses around isolated island and peninsula in west and south coast of Korea.

  • PDF

Application of a wireless pressure sensing system to coastal wind monitoring

  • Pinelli, J.P.;Subramanian, C.S.;Lapilli, C.;Buist, L.
    • Wind and Structures
    • /
    • 제8권3호
    • /
    • pp.179-196
    • /
    • 2005
  • This paper describes the application of a wireless data acquisition system to monitor wind pressures and velocities with absolute pressure sensors and an anemometer. The system was developed for future deployment, as part of a research effort currently underway to instrument coastal homes in Florida to monitor roof wind pressures during hurricanes. The proposed wireless system will replace the current system that involves a large amount of hardwired connections from the sensors to the data processing unit that requires labor intensive wiring and preparation of the home. The paper describes comparison studies and field tests to assess the performance of the system. The new system offers the advantages of light hardware, ease of installation, capacity for 48 hours of continuous data acquisition, good frequency and amplitude responses, and a relatively simple maintenance. However, the tests also show that the shape of the shell that has been previously used to protect the sensors might interfere with the proper measurement of the pressures.