• Title/Summary/Keyword: Coastal monitoring

Search Result 587, Processing Time 0.031 seconds

The Validation of chlorophyll-a band ratio algorithm of coastal area using SeaWiFS wavelength (SeaWiFS 밴드역에 의한 연안해역의 엽록소 밴드비율 알고리듬 검증)

  • 정종철;유신재
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.37-45
    • /
    • 2000
  • Since being launched for ocean observing in 1997, the SeaWiFS sensor has supplied data on ocean chlorophyll distribution and environmental conditions of the atmosphere. Until now, a lot of SeaWiFS data have been archived and utilized for ocean monitoring and land observation. The SeaWiFS sensor has 1km spatial resolution, therefore, it is difficult to obtain data at the coastal zone. Since atmospheric correction algorithms at the coastal area have not been confirmed for chlorophyll algorithm, the ocean color data analysis for coastal zone is not common. In particular, domestic coastal areas have high suspended sediments concentrations and higher absorption influence of colored dissolved organic matter (CDOM), released from in-land, than open-sea. Thus, a useful algorithm for analysis of chlorophyll distribution in domestic coastal areas has not been developed. In this study, empirical algorithms, using data from the ocean color sensor, were developed for monitoring of chlorophyll distribution of coastal areas. In the process of the development of the algorithms, we can find that the red band (665nm) should be used for analyzing of domestic coastal areas near the Yellow Sea.

UAV-based Land Cover Mapping Technique for Monitoring Coastal Sand Dunes

  • Choi, Seok Keun;Kim, Gu Hyeok;Choi, Jae Wan;Lee, Soung Ki;Choi, Do Yoen;Jung, Sung Heuk;Chun, Sook Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.11-22
    • /
    • 2017
  • In recent years, coastal dune erosion has accelerated as various structures have been developed around the coastal dunes. A land cover map should be developed to identify the characteristics of sand dunes and to monitor the condition of sand dunes. The Korean Ministry of Environment's land cover maps suffer from problems, such as limited classes, target areas, and durations. Thus, this study conducted experiments using RGB and multispectral images based on UAV (Unmanned Aerial Vehicle) over an approximately one-year cycle to create a land cover map of coastal dunes. RF (Random Forest) classifier was used for the analysis in accordance with the experimental region's characteristics. The pixel- and object-based classification results obtained by using RGB and multispectral cameras were evaluated, respectively. The study results showed that object-based classification using multispectral images had the highest accuracy. Our results suggest that constant monitoring of coastal dunes can be performed effectively.

Wind power spectra for coastal area of East Jiangsu Province based on SHMS

  • Wang, Hao;Tao, Tianyou;Wu, Teng
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.235-252
    • /
    • 2016
  • A wind velocity power spectrum (WVPS) with high fidelity is extremely important for accurate prediction of structural buffeting response. WVPS heavily depends on the geographical locations, local terrains and topographies. Hence, field measurement of wind characteristics may be the unique way to obtain the accurate WVPS for a specific region. In this paper, a systematic analysis and discussions of existing WVPSs were performed. Six recorded strong wind data from the structural health monitoring systems (SHMS) of Runyang Suspension Bridge (RSB) and Sutong Cable-stayed Bridge (SCB) in Jiangsu Province of China were selected for analysis. The measured and pre-processed wind velocity data was first transformed from time domain to frequency domain to obtain the measured spectrum. The spectrum for each strong wind was then fitted using the nonlinear least square method and compared with both the fitted spectrum from statistical analysis and the recommended spectrum in specifications. The modified Kaimal spectrum was proved to be the "best" choice for the coastal area of East Jiangsu Province. Finally, a suitable WVPS formula fit for the coastal area of East Jiangsu Province was presented based on the modified Kaimal spectrum. Results in this study provide a more accurate and reliable WVPS for wind-resistant design of engineering structures in the coastal area of East Jiangsu Province.

Overfishing and recent risk for collapse of fishery in coastal Mediterranean lagoon ecosystem (Karavasta lagoon, southeastern Adriatic sea)

  • Spase Shumka;Yukio Nagahama;Sarjmir Hoxha;Koji Asano
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.4
    • /
    • pp.294-303
    • /
    • 2023
  • Beside that the fish species and their sub-populations are highly important as a keystone species in the coastal and marine ecosystem, there are very few studies on their presence, distribution and temporal variations within and around the lagoon ecosystems in Albania. This paper provides an updated review on the life cycle, fishery, exploitation state and management of the main species that are subject of commercial fishing in the Karavasta lagoon, southeastern Adriatic coast of Albania. Due to the fact that lagoons represent a continuum between continental and marine aquatic ecosystems they play a crucial role in species life cycles. Further on in the circumstances of rapid utilizations and environmental changes, anomalies in salinity and temperatures, accelerated anthropogenic influences their rate of vulnerability is highly increased. Following the requirements of the Water Framework Directive, transitional water, coastal lagoons and estuaries there is a need for urgent monitoring and management approaches. The commercial species include: European eel (Anguilla anguilla), species of Family Mugilidae (Mugil cephalus, Liza ramada, Liza salienes and Chelon labrosus), Seabream (Sparus aurata), Seabass (Dincentrarchus labrax), etc. Fish productivity is oscillating from maximum value of 61.95 kg/ha is recorded in period of 1975-80 and lower value of 31 kg/ha in year 2020. Our study highlights importance of fish and fishery long-term monitoring, and contributes to understand the driving factors in productivity, migration patterns and species ecology in the vital coastal ecosystems.

Long-gap Filling Method for the Coastal Monitoring Data (해양모니터링 자료의 장기결측 보충 기법)

  • Cho, Hong-Yeon;Lee, Gi-Seop;Lee, Uk-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.333-344
    • /
    • 2021
  • Technique for the long-gap filling that occur frequently in ocean monitoring data is developed. The method estimates the unknown values of the long-gap by the summation of the estimated trend and selected residual components of the given missing intervals. The method was used to impute the data of the long-term missing interval of about 1 month, such as temperature and water temperature of the Ulleungdo ocean buoy data. The imputed data showed differences depending on the monitoring parameters, but it was found that the variation pattern was appropriately reproduced. Although this method causes bias and variance errors due to trend and residual components estimation, it was found that the bias error of statistical measure estimation due to long-term missing is greatly reduced. The mean, and the 90% confidence intervals of the gap-filling model's RMS errors are 0.93 and 0.35~1.95, respectively.

Spatio-temporal Variation of Groundwater Level and Electrical Conductivity in Coastal Areas of Jeju Island

  • Lim, Woo-Ri;Park, Won-Bae;Lee, Chang-Han;Hamm, Se-Yeong
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.539-556
    • /
    • 2022
  • In the coastal areas of Jeju Island, composed of volcanic rocks, saltwater intrusion occurs due to excessive pumping and geological characteristics. Groundwater level and electrical conductivity (EC) in multi-depth monitoring wells in coastal areas were characterized from 2005 to 2019. During the period of the lowest monthly precipitation, from November 2017 until February 2018, groundwater level decreased by 0.32-0.91 m. During the period of the highest monthly precipitation, from September 2019 until October 2019, groundwater level increased by 0.46-2.95 m. Groundwater level fluctuation between the dry and wet seasons ranged from 0.79 to 3.73 m (average 1.82 m) in the eastern area, from 0.47 to 6.57 m (average 2.55 m) in the western area, from 0.77 to 8.59 m (average 3.53 m) in the southern area, and from 1.06 to 12.36 m (average 5.92 m) in the northern area. In 2013, when the area experienced decreased annual precipitation, at some monitoring wells in the western area, the groundwater level decreased due to excessive groundwater pumping and saltwater intrusion. Based on EC values of 10,000 ㎲/cm or more, saltwater intrusion from the coastline was 10.2 km in the eastern area, 4.1 km in the western area, 5.8 km in the southern area, and 5.7 km in the northern area. Autocorrelation analysis of groundwater level revealed that the arithmetic mean of delay time was 0.43 months in the eastern area, 0.87 months in the northern area, 10.93 months in the southern area, and 17.02 months in the western area. Although a few monitoring wells were strongly influenced by nearby pumping wells, the cross-correlation function of the groundwater level was the highest with precipitation in most wells. The seasonal autoregressive integrated moving average model indicated that the groundwater level will decrease in most wells in the western area and decrease or increase in different wells in the eastern area.

Monitoring System of Sandbar Variation of Estuary using Video-based Technique (비디오를 이용한 하구 사주 변화 모니터링 시스템(I) - Hardware System 구축을 중심으로 -)

  • Yoon, Han-Sam;Ryu, Seung-Woo;Kang, Tae-Soon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.630-636
    • /
    • 2008
  • Monitoring the location of the shoreline and foreshore changes through the time and core tasks are carried out by coastal engineers for a wide range of research. With the advent of digital imaging technology, the shore-based video monitoring system provides many advantages than field surveys. This study presents the development and construction(installation) of video monitoring system to assist the study of coastal and shoreline dynamics and evolution, especially sandbar variation at the Nakdong river estuary. For the purpose of this study, at high building near the Dadea-po beach (St. 2) and Jinudo(island) (St. 1) foreshore region, where coastline variation is highly active, 5 video cameras installed; the coastline movement has monitored since Aug. 2007 using the systems. From the image results of video camera, the 'Spit' type sandbar appears at the foreshore region of Doyodeung and Dadea-po beach and measured the deposition process of Jinudo(island) foreshore region. As a result, the monitoring system using video-based technique built in this study would be able to identify changes in the area and width of shoreline and beach of Nakdong river estuary.

Vibration-based damage monitoring of harbor caisson structure with damaged foundation-structure interface

  • Lee, So-Young;Nguyen, Khac-Duy;Huynh, Thanh-Canh;Kim, Jeong-Tae;Yi, Jin-Hak;Han, Sang-Hun
    • Smart Structures and Systems
    • /
    • v.10 no.6
    • /
    • pp.517-546
    • /
    • 2012
  • In this paper, vibration-based methods to monitor damage in foundation-structure interface of harbor caisson structure are presented. The following approaches are implemented to achieve the objective. Firstly, vibration-based damage monitoring methods utilizing a variety of vibration features are selected for harbor caisson structure. Autoregressive (AR) model for time-series analysis and power spectral density (PSD) for frequency-domain analysis are selected to detect the change in the caisson structure. Also, the changes in modal parameters such as natural frequency and mode shape are examined for damage monitoring in the structure. Secondly, the feasibility of damage monitoring methods is experimentally examined on an un-submerged lab-scaled mono-caisson. Finally, numerical analysis of un-submerged mono-caisson, submerged mono-caisson and un-submerged interlocked multiple-caissons are carried out to examine the effect of boundary-dependent parameters on the damage monitoring of harbor caisson structures.

COASTAL ENVIRONMENT MONITORING USING ADJACENT EFFECT OF RADIATION

  • Takashima, Tsutomu;Jung, Sung-Chul;Yi, San-Oh;Kim, Tu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.430-431
    • /
    • 2006
  • KOMPSAT-2 was successively launched on July 28,06. She carries Fine Spatial Resolution Sensor with three channels. It is 4m monochromatic and 1m panchromatic. The main purposes would derive fine urban map and digital elevation model(DEM).Therefore we extend to coastal environment monitoring using the adjacent effect of radiation due to an interaction of radiation between heterogeneous surface and atmosphere. With data analysis of ASTER on TERA, which is 15m resolution in visible and near infrared wavelengths, we found atmospheric aerosols were always large. Note that data analysis was limited in Nagoya bay, Lake Tahoe, California & La Pozuelos, La Picasa, Argentina. Thus this time we expect data analyses around isolated island and peninsula in west and south coast of Korea.

  • PDF

Application of a wireless pressure sensing system to coastal wind monitoring

  • Pinelli, J.P.;Subramanian, C.S.;Lapilli, C.;Buist, L.
    • Wind and Structures
    • /
    • v.8 no.3
    • /
    • pp.179-196
    • /
    • 2005
  • This paper describes the application of a wireless data acquisition system to monitor wind pressures and velocities with absolute pressure sensors and an anemometer. The system was developed for future deployment, as part of a research effort currently underway to instrument coastal homes in Florida to monitor roof wind pressures during hurricanes. The proposed wireless system will replace the current system that involves a large amount of hardwired connections from the sensors to the data processing unit that requires labor intensive wiring and preparation of the home. The paper describes comparison studies and field tests to assess the performance of the system. The new system offers the advantages of light hardware, ease of installation, capacity for 48 hours of continuous data acquisition, good frequency and amplitude responses, and a relatively simple maintenance. However, the tests also show that the shape of the shell that has been previously used to protect the sensors might interfere with the proper measurement of the pressures.