• Title/Summary/Keyword: Coast Topography

Search Result 130, Processing Time 0.023 seconds

The Analysis for the Causes of Beach Erosion on Jeonchon-Najung Beach on the East Coast of Korea (전촌-나정해안의 해안침식 원인분석)

  • Yoo, Hyung-Seok;Kim, Kyu-Han;Joung, Eui-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.611-620
    • /
    • 2008
  • The process of sediment transport has a very complex mechanism due to waves, currents and bottom topography changes. Usually, beach erosion occurs from various causes such as non-equilibrium sediment transport condition, construction of seawall and rip currents. Therefore, when we try to reduce and develop countermeasures for beach erosion, we have to know the main mode and direction of sediment transport that causes beach erosion. In this study, the process of sediment transport on Jeonchon-Najung beach and main causes of beach erosion have been studied. Field investigation data, aerial photos and the results of numerical model test were used in the analysis. As a result, it was realized that the main causes of beach erosion at Jeonchon-Najung beach was due to the construction of fishery harbors and a seawall.

Analysis of Ecodiversity as the Foundation for Conserving Biodiversity and Its Restoration Strategy (생물다양성을 보존하기 위한 토대로서 생태다양성 분석 및 복원 전략)

  • Lim, Bong Soon;Kim, Dong Uk;Kim, A Reum;Seol, Jae Won;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.408-426
    • /
    • 2020
  • This study aims to establish the national strategy for biodiversity conservation by analyzing the current status of ecodiversity as the foundation of biodiversity conservation. Furthermore, this study has another purpose of preparing the measures for conservation and restoration of biodiversity. Ecodiversity was discussed as the basis for conserving biodiversity. Five climate zones and 14 climatic regions, eight plant geographic regions, three massifs and major geologic series, horizontal and vertical topographic conditions, 16 ecoregions, major ecosystems including forest, river and streams, wetlands, coast and marine, agriculture, and urban esosystems, and land use types were discussed as the element of the ecodiversity. In terms of biodiversity conservation, the actual conditions of each ecological unit were reviewed and measures were proposed to reduce biodiversity loss. Destruction and fragmentation of habitat, poor ecosystem management due to socioeconomic changes, the effects of exotic species and chemicals, and climate change were discussed as the major factors causing biodiversity loss. Systematic monitoring based on scientific principles and ecological restoration based on those monitoring results were recommended as measures for biodiversity conservation.

Physical Environments of Suyong Bay during the Rip Current Events at Haeundae - August 2009 (해운대 이안류 발생 시 수영만의 물리환경 - 2009년 8월)

  • Lee, J.C.;Kim, D.H.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.3
    • /
    • pp.110-114
    • /
    • 2010
  • A data set of current, wind and wave height measured at the monitoring buoy and sea level at Busan harbor were analyzed to explain the physical conditions during the strong rip current events at Haeundae Beach of Suyeong Bay during 13~15 August 2009. Tidal current, with spring-neap variations, has similar average speed to the short-term non-tidal currents. The common features at the time of rip currents are the strong northeasterly wind and superposition of tidal and non-tidal currents both flowing toward the coast. However on 14 August when the rip current did not occur, tide and wave height were similar to the rip-current cases but the tidal and non-tidal current were to nearly opposite directions. While strong winds produce large waves thus the basic condition for rip current but its influence on the local circulation in the bay is relatively small. Of the three adjacent beaches, only at Haeundae the rip currents are reported. This difference may be due to the unique bottom topography featured by underwater hill in the central region off Haeundae which can decay the incoming waves, tides and currents to intensify the rip current.

Characteristics of the Land and River Aggregates Distribution in Goyang City, Korea (경기도 고양지역 육상 및 하천골재의 부존 특성)

  • Lee, Hoil;Byun, Uk Hwan;Ko, Kyoungtae;Youm, Seung-Jun;Ji, Sangwoo;Jo, Hwanju;Shin, Seungwon;Lee, Jin-Young
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.535-547
    • /
    • 2021
  • Aggregate is an essential construction material, and the demand is increasing every year. Aggregate has different properties in each region, and it is difficult to supply it over long distances due to its quantity and weight. For the stabilization of aggregate supply and demand, regional aggregate resource surveys have been conducted since 1993 in Korea. In this study, an aggregate resource survey was conducted in Goyang City to understand the characteristics of aggregate distribution as part of the annual regional aggregate resource survey in 2020. Goyang City has a high mountainous area to the east, and the southwestern part shows a topography where a wide flatland develops. It has 18 small streams originated from the eastern mountainuos area and 1 large stream Han River. The drilling data shows that thickness of the Quaternary deposits tend to deepen toward the south. The aggregate reserves are relatively abundant, the depth of the aggregates are relatively deep. Changes in the depth of the Quaternary deposits and the amount of aggregate in Goyang are seems to be closely related to the activities of the Han River rather than the sedimentation characteristics from the upstream to the downstream of the small streams. This characteristics show a similar tendency to the distribution of aggregates in adjacent regions to the west coast in Korea. Therefore, the regions that close to west coast have a high probability of aggregate reserves around relatively large-scale streams flowing into the west coast.

Bathymetric and Topographic Changes of the Gomso-Bay Tidal Flat, West Coast of the Korean Peninsula (한반도 서해안 곰소만 갯벌의 수심 및 지형 변화)

  • Jin Ho Chang;Yong-Gil Kim;Myong Sun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.552-561
    • /
    • 2023
  • The seafloor topography of Gomso Bay on the west coast of Korea was investigated using subtidal bathymetry and tidal-flat altimetry. Gomso Bay consists of 80% tidal flats and 20% subtidal zone, and is divided into an outer bay and an inner bay by the Jujincheon esturary channel. The outer bay tidal flat, has few tidal channels, has a concave topographic profile, and is characterized by the development of chenier and intertidal sand bars, giving it the appearance of gently sloping, dissipative beaches. The inner bay tidal flat has wide upper and middle tidal flats with a well-developed tidal channel system without cheniers. Moreover, the topographical cross-section between these tidal channels is convex upward, and shows the characteristics of a depositional environment greatly influenced by tidal channels and tidal action. An analysis of the horizontal movement of the tidal flat environment over the past 37 years investigating changes in the iso-depth lines in the Gomso-Bay tidal flat between 1981 and 2018 revealed that the Gomso-Bay tidal flat retreated gradually landward. As a result of analyzing the erosion and sedimentation characteristics of Gomso Bay, assuming that most of the water depth changes were due to changes in the elevation of the sea floor and sea level, an average of 1 cm (0 mm/y) of sediment was eroded in the outer bay over the past 37 years (1981-2018), In the inner bay, an average of 50 cm (14 mm/y) was deposited. Notably, the high tidal flats of the outer bay were largely eroded. Monitoring photographs of the coast showed that most of the erosion of the high tidal flats in the outer bay occurred in a short period around 1999 (probably 1997-2002), and that the erosion resulted from the erosion of sand dunes and high-tide beaches caused by temporarily greatly raised high tide levels and storms.

Landscapes and Ecosystems of Tropical Limestone: Case Study of the Cat Ba Islands, Vietnam

  • Van, Quan Nguyen;Duc, Thanh Tran;Van, Huy Dinh
    • Journal of Ecology and Environment
    • /
    • v.33 no.1
    • /
    • pp.23-36
    • /
    • 2010
  • The Cat Ba Islands in Hai Phong City, northern Vietnam, consist of a large limestone island with a maximum height of 322 m above sea level and 366 small limestone islets with a total area of about $180\;km^2$. The islands are relicts of karst limestone mountains that became submerged during the Holocene transgression 7000 - 8000 year ago. The combination of the longtime karst process and recent marine processes in the monsoonal tropical zone has created a very diversity landscape on the Cat Ba Islands that can be divided into 3 habitat types with 16 forms. The first habitat type is the karst mountains and hills, including karst mountains and hills, karst valleys and dolines, karst lakes, karst caves, and old marine terraces. The second habitat type is the limestone island coast, including beaches, mangrove marshes, tidal flats, rocky coasts, marine notch caves, marine karst lakes, and bights. The third habitat type is karst plains submerged by the sea, including karst cones (fengcong) and towers (fengling), bedrock exposed on the seabed, sandy mud seabed, and submerged channels. Like the landscape, the biodiversity is also high in ecosystems composed of scrub cover - bare hills, rainy tropical forests, paddy fields and gardens, swamps, caves, beaches, mangrove forests, tidal flats, rocky coasts, marine krast lakes, coral reefs, hard bottoms, seagrass beds and soft bottoms. The ecosystems on the Cat Ba Islands that support very high species biodiversity include tropical evergreen rainforests, soft bottoms; coral reefs, mangrove forests, and marine karst lakes. A total of 2,380 species have been recorded in the Cat Ba Islands, included 741 species of terrestrial plants; 282 species of terrestrial animals; 30 species of mangrove plants; 287 species of phytoplankton; 79 species of seaweed; 79 species of zooplankton; 196 species of marine fishes; 154 species of corals; and 538 species of zoobenthos. Many of these species are listed in the Red Book of Vietnam as endangered species, included the white-headed or Cat Ba langur (Trachypithecus poliocephalus), a famous endemic species. Human activities have resulted in significantly changes to the landscape end ecosytems of the Cat Ba islands; however, many natural aspects of the islandsd have been preserved. For this reason, the Cat Ba Islands were recognized as a Biological Reserved Area by UNESCO in 2004.

Simulations of Changes in Wind Field Over Mountainous Terrains Using WRF and ENVI-met Numerical Models (WRF와 ENVI-met 수치 모델을 이용한 산악지형의 바람장 변화 모사)

  • Won, Myoungsoo;Han, Seonho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper we interpreted the changes in wind field over complex mountainous terrains. The results of our study can be applied for predicting the direction of fire spread and for establishing strategies for fire prevention. The study area is bounded by $12{\times}12$ km domains of the Samcheok's long-term ecological research (LTER) site located in the east coast, in which a large-fire had occurred from 7 to 13 April 2000. Because of the area's complex topography, we compared the result of the Weather Research and Forecasting (WRF) mesoscale model with those observed by four automated weather stations. The WRF simulation overestimated the wind speed by 5 to 8 m/s (~200%) in comparison with those from four automated weather stations. The wind directions observed by the AWSs were from various directions whereas those from WRF model were mostly west wind at all stations. Overall, the simulations by the WRF mesoscale models were not appropriate for the estimation of microscale wind fields over complex mountainous areas. To overcome such inadequacy of reproducing the wind fields, we employed the ENVI-met model over Samcheok's LTER site. In order to test the model's sensitivity with the terrain effects, experimental simulations were conducted with various initial conditions. The simulation results of the ENVI-met model showed a reasonable agreement in wind speeds (about 70% accuracy) with those of the four AWSs. Also, that the variations in wind directions agreed reasonably well with changes in terrain effect. We concluded that the ENVI-met model is more appropriate in representing the microscale wind field over complex mountain terrains, which is required to predict fire spread and to establish strategies for forest fire prevention.

Past and Future Regional Climate Change in Korea

  • Kwon, Won-Tae;Park, Youngeun;Min, Seung-Ki;Oh, Jai-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.161-161
    • /
    • 2003
  • During the last century, most scientific questions related to climate change were focused on the evidence of anthropogenic global warming (IPCC, 2001). There are robust evidences of warming and also human-induced climate change. We now understand the global, mean change a little bit better; however, the uncertainties for regional climate change still remains large. The purpose of this study is to understand the past climate change over Korea based on the observational data and to project future regional climate change over East Asia using ECHAM4/HOPE model and MM5 for downscaling. There are significant evidences on regional climate change in Korea, from several variables. The mean annual temperature over Korea has increased about 1.5∼$1.7^{\circ}C$ during the 20th century, including urbanization effect in large cities which can account for 20-30% of warming in the second half of the 20th century. Cold extreme temperature events occurred less frequently especially in the late 20th century, while hot extreme temperature events were more common than earlier in the century. The seasonal and annual precipitation was analyzed to examine long-term trend on precipitation intensity and extreme events. The number of rainy days shows a significant negative trend, which is more evident in summer and fall. Annual precipitation amount tends to increase slightly during the same period. This suggests an increase of precipitation intensity in this area. These changes may influence on growing seasons, floods and droughts, diseases and insects, marketing of seasonal products, energy consumption, and socio-economic sectors. The Korean Peninsular is located at the eastern coast of the largest continent on the earth withmeso-scale mountainous complex topography and itspopulation density is very high. And most people want to hear what will happen in their back yards. It is necessary to produce climate change scenario to fit forhigh-resolution (in meteorological sense, but low-resolution in socio-economic sense) impact assessment. We produced one hundred-year, high-resolution (∼27 km), regional climate change scenario with MM5 and recognized some obstacles to be used in application. The boundary conditions were provided from the 240-year simulation using the ECHAM4/HOPE-G model with SRES A2 scenario. Both observation and simulation data will compose past and future regional climate change scenario over Korea.

  • PDF

Spacial Distribution of PM1.0 Major Compounds from Long Range Transport at the Baegryungdo Super Site: Relationship between PSCF and Cluster Analysis (백령도에서 관측된 장거리 유입 PM1.0의 주성분 공간 분포: PSCF 및 군집분석 관계)

  • Oh, Sea-Ho;Lee, Taehyoung;Park, Taehyun;Ahn, Joon-Young;Park, Jin-Soo;Choi, Jin-Soo;Park, Gyutae;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.411-423
    • /
    • 2017
  • The spacial potential source contribution function (PSCF) method was utilized by considering topography and height of back trajectories based on the measurement of organic typo matter (OM), $NO_3{^-}$, $SO{_4}^{2-}$, and $NH_4{^+}$ at the Baegryungdo Super Site ($37^{\circ}57^{\prime}N$, $124^{\circ}37^{\prime}E$, 135 m a.s.l. (above sea level)) for three selected periods (i.e., January~April, May~August, and September~December) in 2013. The PSCF were calculated on the contributions of trans-boundary transport to the hourly mean concentrations using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The cluster analysis using back trajectories was performed to identify the major airflows to the sampling site. The upper atmosphere in the Tianjin area of China and the lower atmosphere in the western coast area of Korea can be the major source of trans-boundary pollution to the sampling site during January~April resulted from PSCF. The area in Lianyungang-city and Liaoning-sheng, China can be responsibile for the nitrogen related secondary compounds during May~August, and Shandong Peninsula in China is the major source area during September~December. In addition, relationships between the cluster analysis of back trajectories and PSCF were investigated for the statistically significance level for the source areas.

Variation Analysis of Forest Resourcs in Anmyundo Using Landsat TM (Landsat TM에 의한 안면도 산림자원 변화경향 분석)

  • Song, Moo-Young;Sin, Kwang-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.188-200
    • /
    • 2000
  • On the basis of the Landsat TM scenes with 15 year's time differences, the topographic maps with 50 years differences, and the air photos with 25 years differences, we carried out the field survey for geology and forestry and analyzed the topographical change and the variation of the forest resource in Anmyundo. In terms of the discrimination of forest trees in Anmyumdo, the NDVI with larger than 0.5 in the winter season is the indicator of the surface of the pine tree land-cover. The peak values of NDVI appear on the surface of the pine aging 30 through 50 years and decrease a little and grossly stabilized over the more aging trees. The distinction of the deciduous forest and grass land from the pine tree was capable with the correlation with the abrupt seasonal variation of NDVI and the surface aspect. The great change of topography is detected in the region Changgiri due to the continuous tidal erosion since the canal construction about 370 years ago and along the all around coast of Anmyundo due to the reclamation for the paddy field. The surface area of the pine tree land-cover in Anmyundo was estimated 35.91 km$^2$ in 1986 and 33.15 km$^2$ in 1993, which is originated from the grassland development in the southeastern part of Anmyundo where the pine tree dominated by 1986. In the northen part of Anmyundo the surface area of the pine land-cover increased a little in 1993 comparing to 1986.

  • PDF