• Title/Summary/Keyword: Coarse size

Search Result 804, Processing Time 0.028 seconds

Effects of Solution Treatment Temperatures on Microstructure and Mechanical Properties of TIG-MIG Hybrid Arc Additive Manufactured 5356 Aluminum Alloy

  • Zuo, Wei;Ma, Le;Lu, Yu;Li, Shu-yong;Ji, Zhiqiang;Ding, Min
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1346-1358
    • /
    • 2018
  • A novel additive manufacturing method with TIG-MIG hybrid heat source was applied for fabricating 5356 aluminum alloy component. In this paper the microstructure evolution, mechanical properties and fracture morphologies of both as-deposited and heat-treated component were investigated, and how these were affected by different heat-treated temperature. The as-deposited microstructure showed dominant equiaxed grains with second phase, and the size of them is coarse in the bottom region, medium in the middle region and fine in the top region owing to different thermal cycling conditions. Compared with as-deposited microstructure, the size of grain becomes large and second phases gradually dissolve in the matrix as heat-treated temperature increase. Different microstructures determine the mechanical properties of component. Results show that average ultimate tensile strength enhances from 226 to 270 MPa and average microhardness increases from 64.2 to 75.3 HV0.1 but ductility decreases from 33 to 6.5% with heat-treated temperature increasing. For all components, the tensile properties are almost the same in the vertical direction (Z) and horizontal direction (Y) due to equiaxed grains, which exhibits isotropy, and the mechanisms of these are analyzed in detailed. In general, the results demonstrate that hybrid arc heat source has the potential to fabricate aluminum alloy component.

Comparison of Microstructure and Hardness of Pure Copper Fabricated by Multi-Axial Forging and Multi-Axial Diagonal Forging (다축단조와 다축대각단조로 제조된 순동의 미세조직 및 경도 비교)

  • Lee, J.K.;Kwon, S.C.;Kim, S.T.;Jeong, H.T.;Kim, Y.G.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.257-265
    • /
    • 2019
  • Multi-axial forging (MAF), a severe plastic deformation technique, is known to be difficult to obtain materials with homogeneous microstructures. Recently, multi-axial diagonal forging (MADF) process has been developed to solve this problem. In this study, in order to compare the microstructural and mechanical homogeneities of the MAFed and MADFed samples, oxygen-free copper (OFC) cubes measuring 25 mm in length were deformed through MAF and MADF processes and the average grain size and hardness were measured at the edge, face, and center regions of the samples. In the MAFed samples, ultrafine grains were formed at the center region, but a considerable amount of coarse grains remain at the face region. Therefore, the MAFed samples showed a high inhomogeneity in regards to grain size and hardness. On the contrary, in the case of the MADFed sample, the grain sizes at the edge, face, and center regions were similar and the hardness in all the regions are almost similar. This indicates that the MADFed sample has a homogeneous microstructure and uniform mechanical properties, which can be attributed to the homogeneous distribution of the effective strain throughout the material. The results of this study suggests that the MADF is a suitable process in the fabrication of high-strength copper materials with a homogeneous and ultrafine grain structure.

Homogeneity of Microstructure and Mechanical Properties of Ultrafine Grained OFHC Cu Bars Processed by ECAP (ECAP 가공에 의해 제조된 초미세립 OFHC Cu 봉재의 미세조직 및 기계적 특성의 균질성)

  • Ji, Jung Hoon;Park, Lee-Ju;Kim, Hyung Won;Hwang, Si Woo;Lee, Chong Soo;Park, Kyung Tae
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.474-487
    • /
    • 2011
  • Bars of OFHC Cu with the diameter of 45 mm were processed by equal channel angular pressing up to 16 passes via route $B_c$, and homogeneity of their microstructures and mechanical properties was examined at every four passes which develop the equiaxed ultrafine grains. In general, overall hardness, yield strength and tensile strength increased by 3, 7, and 2 times respectively compared with those of unECAPed sample. Cross-sectional hardness exhibited a concentric distribution. Hardness was the highest at the center of bar and it decreased gradually from center to surface. After 16 passes, overall hardness decreased due to recovery and partial recrystallization. Regardless of the number of passage, yield strength and tensile strength were quite uniform at all positions, but elongation showed some degree of scattering. At 4 passes, coarse and ultrafine grains coexisted at all positions. After 4 passes, uniform equiaxed ultrafine grains were obtained at the center, while uniform elongated ultrafine grains were manifested at the upper half position. At the lower half position, grains were equiaxed but its size were inhomogeneous. It was found that inhomogeneity of grain morphology and grain size distribution at different positions are to be attributed to scattering in elongation but they did not affect strength. The present results reveal the high potential of practical application of equal channel angular pressing on fabrication of large-sized ultrafine grained bars with quite homogeneous mechanical properties.

Effect of Mo, Cr, and V on Tensile and Charpy Impact Properties of API X80 Linepipe Steels Rolled in Single Phase Region (단상영역에서 압연된 API X80 라인파이프강의 인장 및 샤르피 충격 특성에 미치는 Mo, Cr, V의 영향)

  • Han, Seung Youb;Shin, Sang Yong;Seo, Chang-hyo;Lee, Hakcheol;Bae, Jin-ho;Kim, Kisoo;Lee, Sunghak;Kim, Nack J.
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.788-799
    • /
    • 2008
  • This study is concerned with the effects of Mo, Cr, and V addition on tensile and Charpy impact properties of API X80 linepipe steels. Four kinds of steels were processed by varying Mo, Cr, and V additions, and their microstructures and tensile and Charpy impact properties were investigated. Since the addition of Mo and V promoted to form fine acicular ferrite and granular bainite, while prohibiting the coarsening of granular bainite, it increased the strength and upper shelf energy, and decreased the energy transition temperature. The Cr addition promoted the formation of coarse granular bainite and secondary phases such as martensite-austenite constituents, thereby leading to the increased effective grain size, energy transition temperature, and strength and to the decreased upper shelf energy. The steel containing 0.3wt.% Mo and 0.06wt.% V without Cr had the highest upper shelf energy and the lowest energy transition temperature because its microstructure was composed of fine acicular ferrite and granular bainite, together with a small amount of hard secondary phases, while its tensile properties maintained excellent.

A study on the characteristics of gender fluidity expressed in modern knit fashion (현대 니트 패션에 표현된 젠더 플루이드 특성 연구)

  • Yeonji Lee;Sohee Um
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.1
    • /
    • pp.91-106
    • /
    • 2023
  • This study examines how the concept of gender fluidity-viewing gender identity as a fluid and wide spectrum-is represented in modern knit fashion collections. The period spring/summer 2017-fall/winter 2021, when gender-related fashion keywords started attracting attention, was limited to the last five years, and the results of a case analysis focused on a total of 357 knit fashion photos are as follows. First, the androgynous compromise through the mixing of heterogeneous elements appears as a mix-and-match style due to the patchwork of heterogeneous materials and forms that borrow or share masculinity and femininity. Second, it was confirmed that the dismantling exaggeration caused by the destruction of the size and form of clothes was an avant-garde image that exaggerated the size or length of clothes or destroyed ideas and forms. Third, the exposed sensuality caused by the deformation of the fluid knitting technique was shown in the form of proudly expressing sexuality by exposing the body either using the cut-out technique or through the loose texture of the knit. Knit fashion can highlight decorative effects using handcrafted techniques and express a detailed or coarse sense of organization depending on the density. In addition, since it is possible to create a complex image by juxtaposing and mixing various knit structures, it was confirmed that it is a suitable material for expressing gender fluidity flowing between men and women in fashion.

Influence of grain size ratio and silt content on the liquefaction potentials of silty sands

  • Sonmezer, Yetis Bulent;Kayabali, Kamil;Beyaz, Turgay;Fener, Mustafa
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.167-181
    • /
    • 2022
  • Soil liquefaction has been one of the most important concerns in geotechnical earthquake engineering in recent years, due to its damages to structures and its destructive effects. The cyclic liquefaction of silty sands, in particular, remains of great interest for both research and application. Although many factors are known that affect the liquefaction resistance of sands, the effect of fine grain content is perhaps one of the most studied and still controversial. In this study, 48 deformation-controlled cyclic simple shear tests were performed on BS and CS silt samples mixed with 5%, 15% and 30% by weight of Krk085, Krk042 and Krk025 sands in constant-volume conditions to determine the liquefaction potential of silty sands. The tests were carried out at 30% and 50% relative density and under 100 kPa effective stress. The results revealed that the liquefaction potential of silty sand increases with increasing average particle size ratio (D50sand / d50silt) of the mixture for a fixed silt content. Furthermore, for identical base sand, the liquefaction potentials of coarse grained sands increase with increasing silt content, while the respective potentials of fine grained sands generally decrease. However, this situation may vary depending on the silt grain structure and is affected by the nature of the fine grains. In addition, the variation of the void ratio interval was shown to provide a good intuition in determining the liquefaction potentials of silty sands, while the intergranular void ratio alone does not constitute a criterion for determining the liquefaction potentials of silty sands.

Effect of Solutionizing Condition on the Microstructure and Tensile Properties of a Ni-base Superalloy CMSX-4 (Ni기 초내열합금에서 용체화처리 조건에 따른 조직과 인장 특성)

  • Gi Tae Sung;In Yong Chung;Chang Yong Jo;Je Hyun Lee
    • Journal of Korea Foundry Society
    • /
    • v.44 no.2
    • /
    • pp.31-39
    • /
    • 2024
  • Dendrite boundaries and γ/γ' structure of a second generation single crystalline superalloy CMSX-4 almost disappeared during solution treatment above 1310℃. γ' size in the dendrite core was uniform and fine, however, that in the interdendritic region was coarse and nonuniform. With increasing solutionizing temperature and time, γ' size in the interdednritic region became fine and segregation of alloying elements between dendrite core and interdendritic region diminished. Segregation of solid solution strengthening elements such as W, Co, Re in the dendrite core was not fully removed through the heat treatments, especially that of Re still remained to some extent. Tensile properties at room temperature at which does not cause precipitaion of harmful phases, were improved with increasing solutionizing temperature and time.

Clay Mineral Characteristics of 420 MV (Mud Volcano) in Beaufort Sea, Arctic Ocean (북극 보퍼트해 420 MV (진흙화산)의 점토광물 특성)

  • Jang, Jeong Kyu;Koo, Hyo Jin;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.51-61
    • /
    • 2019
  • Clay minerals, a major component of mud volcano (MV) sediments, are expected to provide important information for characterizing mud volcano formation mechanisms, but clay minerals have rarely been studied. The purpose of this study is to investigate the characteristics of 420 MV and surrounding marine sediments. Clay minerals and grain size were analyzed for 8 box cores from 420 MV and Mackenzie Trough. The relative proportions of the four major clay minerals in the Mackenzie Trough are almost constant in the order of illite, chlorite, kaolinite, and smectite, regardless of the distance from the Mackenzie River. However, the grain size tends to become fining as they move away from the Mackenzie River. Comparing the clay mineral characteristics of river (Colville River, Kuparuk River, Sagavanirktok River, Canning River, Mackenzie River) sediments entering the Beaufort Sea in order to determine the origin of the Mackenzie Trough and 420 MV sediments, the sediments of the Mackenzie Trough are characterized mainly by the Mackenzie River with a low ratio of smectite/illite and a high ratio of kaolinite/chlorite. In 420 MV sediments, the contents of clay minerals decrease in the order of illite, kaolinite, chlorite, and smectite, and the grain size with depth is almost constant. The content of smectite and coarse sediments is about two times higher than the reference core. No river with higher kaolinite content than chlorite exists in the Beaufort Sea, and the ratio of smectite/illite to kaolinite/chlorite is different from the reference core such as the ratio of the Mackenzie River. Compared to the reference core, the high contents of coarse sediments and the constant grain size with depth might be attributed to the ejection by MV. The reference core is interpreted as originating from Mackenzie River, and sediment of 420 MV is interpreted as originating from eruption of MV.

Mechanical Properties of Lightweight Aggregate Concrete according to the Substitution Rate of Natural Sand and Maximum Aggregate Size (천연모래 치환율과 경량 굵은 골재 최대 크기에 따른 경량 골재 콘크리트의 역학적 특성)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.551-558
    • /
    • 2011
  • The effect of the maximum aggregate size and substitution rate of natural sand on the mechanical properties of concrete is evaluated using 15 lightweight aggregate concrete mixes. For mechanical properties of concrete, compressive strength increase with respect to age, tensile resistance, elastic modulus, rupture modulus, and stress-strain relationship were measured. The experimental data were compared with the design equations specified in ACI 318-08, EC2, and/or CEB-FIP code provisions and empirical equations proposed by Slate et al., Yang et al., and Wang et al. The test results showed that compressive strength of lightweight concrete decreased with increase in maximum aggregate size and amount of lightweight fine aggregates. The parameters to predict the compressive strength development could be empirically formulated as a function of specific gravity of coarse aggregates and substitution rate of natural sand. The measured rupture modulus and tensile strength of concrete were commonly less than the prediction values obtained from code provisions or empirical equations, which can be attributed to the tensile resistance of lightweight aggregate concrete being significantly affected by its density as well as compressive strength.

The Distribution Characteristics of Grain Size and Organic Matters of Surface Sediments from the Nakdong-Goryeong Mid-watershed (낙동·고령 중권역의 표층 퇴적물 입도 조성 및 유기물질 분포 특성 변화)

  • Kim, Shin;Ahn, Jungmin;Kim, Hyounggeun;Kwon, Heongak;Kim, Gyeonghoon;Shin, Dongseok;Yang, Deukseok
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.411-423
    • /
    • 2018
  • To investigate the distribution characteristics of grain size and organic matter of surface sediments from the Nakdong-Goryeong Mid-watershed, surface sediments were collected and analyzed. The samples were collected from six sited at four different times between May 2013 and May 2014. The were analyzed for grain size, water content, ignition loss, chemical oxygen demand, total organic carbon and total nitrogen. The surface sediments were mainly composed of medium sand (mean 44.7%) and coarse sand (mean 32.8%) and became coarser in May 2014. Fine sediments at the site NG-2 were poorly sorted and positively skewed, and occur in a tributary environment that is relatively low-energy compared with the other sites. The water content at the studied sites (15.3 ~ 34.9%) averaged 20.25%, and ignition loss (0.4 ~ 5.8%) and total nitrogen (274 ~ 2493 mg/kg) averaged 1.33% and, 696 mg/kg, respectively. These values indicated that the sediments were not seriously contaminated when compared with the sediment pollution evaluation standard of the National Institute of Environmental Research. The chemical oxygen demand (mean 0.17%) was at the non-polluted level compared with United States Environmental Protection Agency sediment quality standards. The total organic carbon (mean 0.18%) at all sites except site NG-2 (lowest effect level) was the no effect level of the Ontario sediment quality guidelines. The COD/IL (0.02 ~ 0.20) and C/N (0.73 ~ 6.76) were less than 1 and 10, respectively. Organic matter in the study area produced naturally from aquatic organisms. Results of principal component analysis showed that fine sediments (very fine sand and silt) were significantly affected by organic matters (ignition loss, chemical oxygen demand, total organic carbon and total nitrogen). In addition, the highest organic matters content in the study area occurred at the site with the finest sediments (NG-2).