• Title/Summary/Keyword: Coarse size

Search Result 804, Processing Time 0.027 seconds

Characteristic of Microcracks with Mixing Proportional Properties of Concrete (미세균열이 콘크리트의 염소이온 침투에 미치는 영향 III; 배합조건 특성에 따른 미세균열의 특성)

  • Yoon, In-Seok;Kim, Young-Geun;Park, Ki-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.469-475
    • /
    • 2008
  • It is obvious that chloride penetration through cracks can threaten the durability of concrete substantially, according to the previous studies of author. It was proposed that crack depth corrseponded with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It is now necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. The purpose of this study is examining the effect of mix proportional features of concrete such as coarse aggregate, high strengtherize of concrete and reinforcement of steel fiber on chloride penetration through cracks. Although small size of coarse aggregate can lead to many microcracks in concrete, the cracks should not impact on chloride penetration directly. On the contrary, chloride should penetrate through cracks easily in concrete with a large size of coarse aggregate because mixrocracks are connected to each other. Second, high strength concrete has an excellent performance to resist with chloride penetration. However, for cracked high strength concrete, its performance is reduced upto the level of ordinary concrete. Finally, steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly.

Characterization of artificial aggregates of coal bottom ash-red clay system (석탄바닥재-적점토계 인공골재의 특성평가)

  • Kim, Kangduk;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.305-311
    • /
    • 2012
  • In order to recycle the coal bottom ashes (denoted as BA) produced from a thermal power plant, the artificial aggregates (denoted as AAs) containing BA and red clay were manufactured, and the physical properties of AAs were studied as a function of particle size of BA and batch compositions. As-received BA had 38 wt% coarse particles of above 2 mm and many unburned carbon mass and porous slag particles were co-existed. So the two particle sizes of BA, the fine (< 100 ${\mu}m$) and coarse (< 2 mm), were prepared by milling and screening process. The AAs containing fine BA sintered at $1100{\sim}1200^{\circ}C$ had the higher bulk density and lower water absorption compared to the specimen made of coarse BA. The inside core of AAs manufactured by using coarse BA showed nonuniform and porous microstructure, while the AAs made of fine BA had a uniform and dense microstructure. In this research, the AAs containing BA and red clay with various bulk density (1.2~1.7) and water absorption (13~21 %) could be manufactured by controlling the particle size of BA and batch compositions, so the AAs of various physical properties could be applied to the wide fields such as construction/building materials in near future.

Effects of Hybrid Lipid Concentration on Equilibrium Domain Size in a Lipid Bilayer Immersed in Water

  • Sornbundit, Kan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1899-1903
    • /
    • 2018
  • The effects of introducing hybrid lipids to a lipid bilayer containing saturated and unsaturated lipids immersed in water were studied. The lipid and water molecules were modeled as coarse-grained particles. All particles were simulated by using the dissipative particle dynamics method. The results showed that the hybrid lipids accumulated at the interface between the saturated and the unsaturated lipid domains. The relation between the hybrid lipid concentration and the equilibrium domain size was obtained. Moreover, the sizes of the simulated lipid domains are consistent with that given by the lipid raft definition.

Computer Simulation for Microstructure Development in Porous Sintered Compacts (다공질 소결체의 조직형성에 관한 컴퓨터 시뮬레이션)

  • Shin, Soon-Ki;Matsubara, Hideaki
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.213-219
    • /
    • 2006
  • A Monte Carlo simulation based on Potts model in a three dimensional lattice was studied to analyze and design microstructures in porous sintered compacts such as porosity, pore size, grain (particle) size and contiguity of grains. The effect of surface energy of particles and the content of additional fine particles to coarse particles on microstructure development were examined to obtain fundamentals for material design in porous materials. It has been found that the larger surface energy enhances sintering (necking) of particles and increases contiguity and surface energy does not change pore size and grain size. The addition of fine particles also enhances sintering of particles and increases contiguity, but it has an effect on increment of pore size and grain size. Such a simulation technique can give us important information or wisdom for design of porous materials, e.g., material system with high surface energy and fine particle audition are available for higher strength and larger porosity in porous sintered compacts with applications in an automobile.

A Study on the Mix Design and Quality Factors of the Combined High Flowing Concrete Using High Belite Cement

  • Kwon, Yeong-Ho
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.121-129
    • /
    • 2002
  • This study investigates experimentally into the design factors and quality variations having an effect on the properties of the combined high flowing concrete to be poured in the slurry wall of Inchon LNG in-ground receiving terminal. Especially, high belite cement and lime stone powder as cementitious materials and viscosity agent in order to improve self-compaction and hydration heat are used in this study. Water-cement ratio(W/C), fine aggregate volume ratio(Sr) and coarse aggregate volume ratio(Gv) as design factors of the combined high flowing concrete are applied to determine the optimum mix design proportion. Also quality variations for sensitivity test are selected items as followings. (1)Surface moisture(5cases) and (2)Fineness modulus of fine aggregate(5cases), (3)Concrete temperature(3cases), (4)Specific surface(3cases) and particle size of lime stone powder. As experimental results, water-cement ratio, fine and coarse aggregate volume ratio are shown as the optimum range 51%, 43% and 53% separately considering site condition of slurry wall. Also quality factors by sensitivity test should be controlled in the following ranges. (1) Surface moisture :to.67% and (2)Fineness modulus 2.6$\pm$0.2 of fine aggregate, (3)Concrete temperature l0-20t, (4) Specific surface 6,000$\textrm{cm}^2$/g and particle size 9.7$\pm$1.0${\mu}{\textrm}{m}$ of lime stone powder. Based on the results of this study, the optimum mix design proportion of the combined high flowing concrete are selected and poured successfully in the slurry wall of LNG in-ground tank.

  • PDF

Fracture Behavior and Crack Growth of Concrete by The Nonlinear Fracture Mechanics (비선형 파괴역학에 의한 콘크리트의 파괴거동과 균열성장에 관한 연구)

  • 배주성;나의균
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.2
    • /
    • pp.81-92
    • /
    • 1990
  • Concrete, a mixed material, has heterogeniety, anisotrophy and nonlinearity. Therefore, in its 'racture analysis, it is more reasonable to evaluate its fracture toughness by applying the concept of 'racture mechanics rather than the strength concept. Up to the present the concepts of fracture mechanics which were applied to concrete have been divided into two main classes. The one is the concept of linear elastic fracture mechanics and the other is the concept of elastic-plastic fracture mechanics. But it has been pointed out that there are many problems and irrationalities in applying the concept of linear elastic fracture mechanics to concrete. In this study, the J -integral method and the COD method mainly used in the analysis of nonlinear fracture mechanics, were introduced and the three point bending test was carried out for investigating the effects of the variation of the maximum aggregate size and notch depth on the fracture behavior and the crack growth of concrete, and the relationships of fracture energy and crack opening displacement. According to the results of this study the more the maximum aggregate size and the notch depth increased, the more the nonlinearity of load-deflection behavior was remarkable. The increase of the coarse aggregate size created the more ductility of concrete. Thus concrete showed the more stable fracture. As for the path of the crack growth, the more the coarse aggregate size increased, the more it was irregulary deviated from the straight line but it was not almost affected by the variation of the notch depth. Also, the fracture energy increased according as the coarse aggregate size increased and the notch depth decreased.

The Design and Performance Test of Miniaturized Sled Type Dual-Servo Actuator (초소형 Sled-type 이중 서보 엑추에이터 설계 및 특성 분석)

  • 강동우;김기현;정재화;권대갑
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.357-360
    • /
    • 2002
  • Nowadays, the improvement and development of Multi-media, information and communication technology are rapidly processed. And many products, for example, digital camera, digital camcorder, and PDA, are used for them. They need large data storage capacity and small size, light storage system. Due to that, many studies and researches in data storage system have been carried out. Especially, micro drive system was presented by IBM.(1) However, its system is expensive and uneasy to be portable. In ODD technologies, 1 inch drive system is not yet or in processing status.(2) If to be possible and to be come up, it is cheap than HDD system and easy to transfer information. In this paper, a miniaturized actuator(about linch) is designed and tested for ODD system. Specially, it is adapted for NFR(Near-field Recoding) system using SIL(Solid Immersion Lens). It is the dual-servo actuator which consists of a coarse actuator and fine actuator. Its actuating force generation method is VCM(Voice Ceil Motor). The fine actuator has 4-wire suspensions and bobbin wrapped by coil and includes focusing motion as well as tracking motion. The coarse actuator has an actuating coil and V-grooved guide mechanism. Also, the characteristics of the designed actuator is estimated by sine-swept mode and LDV(Laser Doppler Vibro-meter).

  • PDF

REMEDIATION OF GROUNDWATER CONTAMINATED WITH BENZENE (LNAPL) USING IN-SITU AIR SPARGING

  • Reddy, Krishna R.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.11-24
    • /
    • 2003
  • This paper presents the results of laboratory investigation performed to study the role of different air sparging system parameters on the removal of benzene from saturated soils and groundwater. A series of one-dimensional experiments was conducted with predetermined contaminant concentrations and predetermined injected airflow rates and pressures to investigate the effect of soil type and the use of pulsed air injection on air sparging removal efficiency. On the basis of these studies, two-dimensional air sparging remediation systems were investigated to determine the effect of soil heterogeneity on the removal of benzene from three different homogeneous and heterogeneous soil profiles. This study demonstrated that the grain size of the soils affects the air sparging removal efficiency. Additionally, it was observed that pulsed air injection did not offer any appreciable enhancement to contaminant removal for the coarse sand; however, substantial reduction in system operating time was observed for fine sand. The 2-D experiments showed that air injected in coarse sand profiles traveled in channels within a parabolic zone. In well-graded sand the zone of influence was found to be wider due to high permeability and increased tortuosity of this soil type. The influence zone of heterogeneous soil (well-graded sand between coarse sand) showed the hybrid airflow patterns of the individual soil test. Overall, the mechanism of contaminant removal using air sparging from different soil conditions have been determined and discussed.

  • PDF

Microstructure and Mechanical Properties in Al-Li-(Be) Alloys. (Al-Li-(Be)합금 주괴의 미세조직과 기계적 성질)

  • Eun, Il-Sang;Cho, Hyun-Kee
    • Journal of Korea Foundry Society
    • /
    • v.10 no.5
    • /
    • pp.417-425
    • /
    • 1990
  • The purpose of this study is to investigate the effect of Be addition on the microstructure and mechanical properties of as-cast and homogenization treated Al-Li-(Be)alloys. The ductility of as-cast Al-Li alloy was increased by the addition of Be and the fracture morphology was changed from brittle to ductile mode. Also, hardness and strength have been decreased by homogenization treatment. The morphology of eutectic structure which consists of ${\alpha}(Al)$ and ${\alpha}(Be)$ was changed from lammellae to spherical type by homogenization treatment. The shape of ${\alpha}(Be)$ phase has been revealed as hollow type by TEM observation. It consists of outer surfaces with well defined crystal facets and the core filled with ${\alpha}(Al)$. The microstructure of as-cast Al-Li-Be alloys showed coarse ${\delta}'$, fine ${\delta}'$, and coarse ${\delta}$ phases. The coarse and fine ${\delta}'$ phases were formed at Be-rich phase /matrix interfaces and in matrix, respectively. By homogenization treatment, the ${\delta}$ phase in Al-Li and Al-Li-Be alloys dissolved and the size of ${\delta}$ phase in Al-Li-Be alloys was finer than that of Al-Li alloy.

  • PDF

An Experimental Study on the Properties of the High Strength Crushed Sand Concrete Using Blast-Furnace Slag (고로슬래그를 사용한 고강도 부순모래 경화콘크리트의 물성에 관한 실험적 연구)

  • Choi, Young-Wha;Kim, Jong-In
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.3
    • /
    • pp.169-176
    • /
    • 2005
  • The purpose of this study is to develop the high strength crushed sand concrete in conditions of water binder ratios of 25, 30, 35% and blast-furnace slag substitutions of 0, 15, 30, 45%. Additionally, in case of water binder ratio of 30%, the maximum size of coarse aggregate is two kinds of 13, 19 mm. The conclusions of this study are as follows ; 1. The compressive strength appeared lower in early age as compared with that of plain concrete according to increasing of the blast-furnace slag substitution. But, the compressive strength was respectively 5, 6, 10% larger than that of plain concrete in case of 25, 30, 35% water binder ratios, 28 days, 30% blast-furnace slag substitution and 19mm coarse aggregate. 2. According to increasing of the blast-furnace slag substitution, the modulus of elasticity and the tensile strength of concrete increased. 3. The length change by the shrinkage increased when the larger coarse aggregate was used, and decreased according to higher blast-furnace slag substitution.

  • PDF