• Title/Summary/Keyword: Coarse precipitate

Search Result 13, Processing Time 0.021 seconds

Beryllium Effects on the Microstructure and Mechanical Properties of A356 Aluminium Casting Alloy

  • Lee, Jeong-Keun;Kim, Myung-Ho;Choi, Sang-Ho
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.431-438
    • /
    • 1998
  • Microstructure of A356 aluminum alloys cast in the permanent mold was investigated by optical microscope and image analyzer, with particular respect to the shape and size distribution of iron intermetallics known as ${\beta}-phase$ ($Al_5FeSi$). Morphologies of the ${\beta}-phase$ was found to change gradually with the Be:Fe ratio like these. In Be-free alloys, ${\beta}-phase$ with needlelike morphology was well developed, but script phase was appeared when the Be:Fe ratio is above 0.2:1. With the Be:Fe ratios of 0.4:1-1:1, script phase as well as Be-rich phase was also observed. In case of higher Be addition, above 1:1, Be-rich phase was observed on all regions of the specimens, and increasing of the Be:Fe ratios gradually make the Be-rich phase coarse. It was also observed that the ${\beta}-phase$ with needlelike morphology was coarsened with increase of the Fe content in Be-free alloys. However, in Be-added alloys, length and number of these ${\beta}-phases$ were considerably decreased with the increased Be:Fe ratio. Beryllium addition improved tensile properties and impact toughness of the A356 aluminium alloy, due to the formation of a script phase or a Be-rich phase instead of a needlelike ${\beta}-phase$. The DSC tests indicated that the presence of Be could increase the amount of Mg which is available for $Mg_2Si$ precipitate hardening, and enhance the precipitation kinetics by lowering the ternary eutectic temperature.

  • PDF

Petrological Characteristics and Deterioration State of Standing Buddha Statue in the Gwanchoksa Temple, Nonsan, Korea (논산 관촉사 석조미륵보살입상의 암석학적 특성과 풍화훼손도)

  • Yun, Seok-Bong;Kaug, Yean-Chun;Park, Sung-Mi;Yi, Jeong-Eun;Lee, Chan-Hee;Choi, Seok-Won
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.629-641
    • /
    • 2006
  • The Standing Buddha Statue in the Gwanchoksa temple consists of medium to coarse grained biotite granodiorite with dark grey color, and it has a week gneissosity along the pegmatite veins. The results of magnetic susceptibility and geochemical patterns of the host rock of Standing Buddha Statue and the basement rock suggest that both values are formed from the co-genetic magma with the same differentiation process. The CIAs of the basement rock and the Standing Buddha Statue are calculated to 51.43 and 50.86, and the WPIs are estimated 4.52 and 8.95, respectively. So the weathering potential from the host rock of Standing Buddha Statue and basement rock prove to be high. The Standing Buddha Statue is terribly damaged with physical weathering from deterioration and exfoliation, and are scattered with secondary pollutant and precipitate. Basement rock is also in danger of ground collapse because of irregularly developed discontinuity system. Most surface of Standing Buddha Statue is seriously discolored into yellowish brown and dark gray, or black precipitates are also formed. Moreover, it is heavily covered with crustose lichen, fungi and algae, or moss are also found. In order to control the influential factors with the complex deterioration of Standing Buddha Statue, it is needed to rearrange a site environments, and conservation scientific management is required to protect it from covering lichens, exfoliations and fractures.

U-Pb(SHRIMP) and K-Ar Age Dating of Intrusive Rocks and Skarn Minerals at the W-Skarn in Weondong Deposit (원동 중석 스카른대에서의 관입암류와 스카른광물에 대한 U-Pb(SHRIMP) 및 K-Ar 연대)

  • Park, Changyun;Song, Yungoo;Chi, Se Jung;Kang, Il-Mo;Yi, Keewook;Chung, Donghoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.161-174
    • /
    • 2013
  • The geology of the weondong deposit area consists mainly of Cambro-Ordovician and Carboniferous-Triassic formations, and intruded quartz porphyry and dyke. The skarn mineralized zone in the weondong deposit is the most prospective region for the useful W-mineral deposits. To determine the skarn-mineralization age, U-Pb SHRIMP and K-Ar age dating methods were employed. The U-Pb zircon ages of quartz porphyry intrusion (WD-A) and feldspar porphyry dyke (WD-B) are 79.37 Ma and 50.64 Ma. The K-Ar ages of coarse-grained crystalline phlogopite (WD-1), massive phlogopite (WDR-1), phlogopite coexisted with skarn minerals (WD-M), and vein type illite (WD-2) were determined as $49.1{\pm}1.1$ Ma, $49.2{\pm}1.2$ Ma, $49.9{\pm}3.6$ Ma, and $48.3{\pm}1.1$ Ma, respectively. And the ages of the high uranium zircon of hydrothermally altered quartz porphyry (WD-C) range from 59.7 to 38.7 Ma, which dependson zircon's textures affected by hydrothermal fluids. It is regarded as the effect of some hydrothermal events, which may precipitate and overgrow the high-U zircons, and happen the zircon's metamictization and dissolution-reprecipitation reactions. Based on the K-Ar age datings for the skarn minerals and field evidences, we suggest that the timing of W-skarn mineralization in weondong deposit may be about 50 Ma. However, for the accurate timing of skarn mineralization in this area, the additional researches about the sequence of superposition at the skarn minerals and geological relationship between skarn deposits and dyke should be needed in the future.