• Title/Summary/Keyword: Coarse Grained Zone

Search Result 49, Processing Time 0.032 seconds

A Study on Microstructure and Thoughness of Electrogas Weldments (일렉트로가스 용접부의 조직 및 인성에 관한 연구)

  • 이해우;장태원;이윤수;석한길;강성원
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.68-74
    • /
    • 1996
  • The microstructure of HAZ and the mechanical properties in weldments such as hardness and toughness were studied for mild steel and AH36 grade TMCP steel, as increasing heat input with electrogas welding process. The results of this study can be summarized as follow: 1) In the HAZ of mild steel, the width of coarse grained zone was larger than that of the nomalized zone, however in the case of TMCP steel, the nomalized zone was wider than the coarse grained zone. 2) The grain size of HAZ become coarse with increasing heat input. And at the same heat input, the grain size of TMCP steel was more coarser than that of mild steel. 3) According to the change of heat input, the deviation of hardness values was not significant, and the maximum values of hardness was not in HAZ but in the weld metal. And the hardness values in root part was higher than in face part. 4) Even though the HAZ grain size of mild steel was larger than that of TMCP steel, the impact values for mild steel was higher than those for TMCP steel, and the impact values in face part was higher than those in root part.

  • PDF

Microstructure Evolution and Its Effect on Strength during Thermo-mechanical Cycling in the Weld Coarse-grained Heat-affected Zone of Ti-Nb Added HSLA Steel (Ti-Nb첨가 저합금강 용접열영향부에서의 열-응력 이력이 미세조직 및 기계적 성질에 미치는 영향에 관한 연구)

  • Moon, Joonoh;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • The influence of thermo-mechanical cycling on the microstructure and strength in the weld coarse-grained heat affected zone (CGHAZ) of Ti-Nb added low carbon HSLA steel was explored through Vickers hardness tests, nanoindentation experiments, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Undeformed and deformed CGHAZs were simulated using Gleeble simulator with different heat inputs of 30kJ/cm and 300kJ/cm. At high heat input of 300kJ/cm, the CGHAZ consisted of ferrite and pearlite and then their grain sizes were not affected by deformation. At low heat input of 30kJ/cm, the CGHAZ consisted of lath martensite and then the sizes of prior austenite grain, packet and lath width decreased with deformation. In addition, the fraction of particle increased with deformation and this is because the precipitation kinetics was accelerated by deformation. Meanwhile, the Vickers and nanoindentation hardness of deformed CGHAZ with 30kJ/cm heat input were higher than those of undeformed CGHAZ, which are due to the effect of grain refinement and precipitation strengthening.

고 Mn강의 용접 열영향부에서의 기계적 특성평가

  • Yu, Jae-Hong;Kim, Sang-Hun;Park, Yeong-Hwan;Lee, Chang-Hui
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.25-25
    • /
    • 2010
  • 8 wt.% 망간 (Mn) 이 함유된 마르텐사이트계 고 Mn강은 고강도용 강재로 산업현장에 적용될 수 있는 유용한 재료이다. 그러나, 다량의 망간의 함유로 인한 용접성 저하로 상용화를 위해서는 용접성 평가가 필요하다. 본 연구에서는 gleeble simulator 를 통해 열영향부를 재현한 후 local brittle zones(LBZs) 을 규명하였다. 모재는 Electron Probe Micro Analyzer (EPMA) 및 X-Ray Diffractometer(XRD) 로 분석결과 다량의 Mn 함유로 인해 lath마르텐사이트 미세조직과 소량의 잔류 오스테나이트로 구성되어 있었다. 용접부에서 모재까지 Vickers 경도계로 경도 분포를 측정한 결과 coarse-grained heat affected zone (CGHAZ) 에서 fine-grained heat affected zone (FGHAZ) 까지 경도 증가 후 subcritical heat affected zone (SCHAZ) 까지 급격한 경도 감소 거동을 보였다. 열영향부의 미세조직은 투과전자현미경 (TEM)으로 분석하였다. 연성취성천이온도 (DBTT) 측정을 위해 온도 구간을 상온, $0^{\circ}C$, $-20^{\circ}C$, $-40^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$으로 설정하여 charpy impact test를 시행하였다. 그 결과 coarse-grained heat affected zone(CGHAZ) 에서 조대한 결정립으로 인해 낮은 충격값을 보였다.

  • PDF

Correlation Between M-A Constituents and Tensile Properties in the Intercritical Coarse Grained HAZ of an Ultra Low Carbon Steel (극 저탄소강의 Intercritical coarse grained HAZ에서의 M-A상과 인장특성 간의 상관관계)

  • Lee, Yoon-Ki;Moon, Joon-Oh;Kim, Sang-Hoon;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.99-103
    • /
    • 2010
  • It is well known that martensite-austenite (M-A) constituents are formed in the intercritically reheated coarse grained heat affected zone (ICCGHAZ) of a multipass weld and they act on the local brittle zone (LBZ) in the welded structures. To investigate the effect of M-A constituents on the tensile properties of ICCGHAZ, specimens with M-A constituents of different volume fraction and size were prepared through the multipass welding cycles simulated by a Gleeble simulator and then tensile test was carried out. The results indicated that finely distributed M-A constituents contributed to decrease the yield ratio, which is mainly due to the increased tensile strength.

A Study on the Effect of Heat Input on the Microstructure and Toughness of Weldments Made by Domestic Flux Cored Wires. (국산 플럭스 코어드 와이어 용접에서 입열량이 용접부의 미세조직과 인성에 미치는 영향)

  • 고진현;국정한
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.57-69
    • /
    • 1993
  • In the present study, the microstructure and Charpy V notch toughness of multipass $CO_2$ FCA weldment in three different heat inputs(1-3KJ/mm)were investigated. The weldments using two different domestic FCAW wires(AWS E71T-1 and E71T-5 equivalent) in C-Mn steel were chemically analysed. The following conclusions can be inferred. 1. T-1 wire Showed a stable arc transfer, less spatter and harsh, a better bead spreading and easy slag removal, whereas T-5 wire suffered from the arc stability, which tended to increase spatter and produce a more convex bead. 2.The microsturctures of the top beads of the weldments in three different heat inputs consisted of coarse-grained boundary ferrite and Widmanstatten ferrite side plate with increasing heat inputs. The modest fraction of acicular ferrite in the two wire weldments was observed in the 2KJ/mm heat input. 3.The fine-grained reheated zones of both welds consisted of a duplex microstructure of polygonal ferrite and second phases. 4. The basic flux weldment of T-5wires showed a higher Charpy impact property than that of T-1 wires because of a higher fraction of acicular ferrite in the weld microstructure.

  • PDF

A Study of MD Constitutive Model Calibration for Coarse-grained Soils (조립재료에 대한 MD 구성모델 캘리브레이션 연구)

  • Choi, Changho;Shin, Dong-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • The structural stability of fill dam largely depends on the engineering behavior of rock materials used as main zone for dam construction and it is necessary to understand well the stress-strain characteristics of fill materials as well as shear strength property. In addition, the numerical analysis of fill dam requires a thorough study for calibrating material properties and parameters of a coarse-grained soil constitutive model. In this paper, large triaxial test results for Buhang-dam fill materials are analyzed and constitutive model parameters are calibrated based on the test results. It is shown that MD constitutive model is capable to predict the stress-strain behavior of dense and loose coarse-grained soils used for Buhang-dam construction based on the comparison study between the experimental test result and numerical simulation.

Characterization of Sericite Occurred in the Bobae Mine, Pusan, Korea (부산 보배광산산 견운모의 광물학적 특성)

  • Moon, Ji-Won;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 1996
  • The ores of the Bobae mine are mainly composed of sericite and quartz, and with appreciable amount of some other minerals such as andalusite. pyrophyllite, and albite, etc.. Sericite occurs in various a1teration zones having different crystal size and habit. Sericites can be c1assified into two types based on the crystal size; fine-grained and coarse-grained sericite. Fine-grained sericite occurs as an aggregate. Mineralogical characterizations of both types of sericites have been studied with various methods. Lattice parameters of two types of sericites occurred in various alteration zones are almost identical. but b parameter of coarse-grained sericite appears to be slight1y bigger than that of fine-grained aggregates. Average structural formula of fine- and coarse-grained sericite is $K_{1.44}Al_{3.86}(Si_{6.35}Al_{1.65})O_{20}(OH)_4$ and $K_{1.71}Al_{3.82}(Si_{6.20}Al_{1.80})O_{20}(OH)_4$, respectively. Structural formulae of coarse-grained sericites are close to that of muscovite. Infrared spectra show that there is slight distinction between sericites occurred in andalusite-pyrophyllite zone and other subzones. IR spectra of sericites due to Si-O vibration ($540{\sim}530cm^{-1}$) tend to shift to smaller wavenumber side from center to outer alteration zone. All samples have litt1e or no interstratified minerals. and this is demonstrated by Ir and DTA-TG results. It indicates that the Bobae mine is formed at relatively high temperature. That the ratio of quartz to sericite in ores varies greatly indicates that several discontinuous hydrothermal alteration processes have been involved.

  • PDF

The effect of silicon and manganese on (Modelling FCW 용착금속의 기계적 성질에 미치는 Si, Mn의 영향)

  • 양철웅;강춘식;김경중
    • Journal of Welding and Joining
    • /
    • v.8 no.2
    • /
    • pp.27-39
    • /
    • 1990
  • The effect of silicon and manganese, in the ranges of 0.3% to 1.0wt% Si and 0.7 to 2.6wt%Mn, on the microstructure and mechanical properties of flux cored arc welded deposits have been investigated for the purpose of improving mechanical properties. Microstructure of weld metals was mainly influenced by manganese content, and manganese increased the volum fraction of acicular ferrite and refined the microstructure. Also, tensile properties were governed by manganese content, ultimate tensile strength and yield strength were increased by approximately 82MPa and 58MPa per 1% Mn addition to the deposit. Toughness was improved by increasing Mn content and lowering Si content. Optimal impact properties were obtained at above 1.8wt% Mn and below 0.5wt% Si. Acicular ferrite was predominant factor in improving mechanical properties. Formation of acicular ferrite was promoted by manganese and no direct relationship between AF(acicular ferrite) proportion and oxygen in weld metal was found.

  • PDF

Characterization of Fracture Roughness in Coarse.medium.fine Grained Granite (암반 불연속면의 거칠기 특성 - 조.중.세립질 화강암을 중심으로 -)

  • 김종태;정교철;김만일;송재용;박창근
    • The Journal of Engineering Geology
    • /
    • v.14 no.2
    • /
    • pp.147-168
    • /
    • 2004
  • Purpose of this study is to quantitatively characterize the fracture roughness which was measured with a confocal laser scanning microscope. The roughness discrete data measured by confocal laser microscope were analyzed by spectral analysis and fast Fourier transform (FFT).The roughness data by used noise reduction filter were applied for fractal analysis to describe roughness features quantitatively. Artificial fractures created by Brazilian test on granites were used to measure fracture roughness under the confocal laser scanning microscope. Measurements were performed along three scan lines on each fracture surface. 36 scan lines were determined on 12 specimens in total. Features of roughness showed that coarse and medium grained granites tend to more rough features than those of fine grained granites. Continuous analog data of roughness is possible to described as discrete data of measure roughness with a fixed interval under the confocal laser microscope. Results of FFT with the measured data showed the highest values on the second harmonics. Distribution of average amplitude of second harmonics was observed 0.9853 in coarse grained granite, 1.0792 in medium grained granite and 0.6794 in fine grained granite. This indicates that the larger roughness has the higher energy of harmonics as the result of fractal analysis in low frequency zone.

Evaluation of Reheat Cracking Susceptibility with Simulated Heat Affected Zones in Cr-Mo-V Turbine Rotor Steel (CrMoV 터빈로터강에서 모의 열영향부 시험편을 이용한 재열균열 민감도평가)

  • 김광수
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.89-102
    • /
    • 1995
  • The evaluation of reheat cracking susceptibility in CrMoV turbine rotor steel was performed using thermally simulated heat affected zones. The examinations were carried out in terms of microstructural characterization, microhardness measurement and a Charpy type notch opening three point bend test. It was found that reheat cracking susceptibility increased as the peak temperature increased. This effect was due to the combined effects of the carbide dissolution and unrestricted grain growth at 1350.deg. C peak temperature. Reheat cracking susceptibility was estimated based on microhardness measurement and prior austenite grain size. It was established that for this particular material, reheat cracking in coarse grained heat affected zone can be eliminated if the microhardness is below about 360DPH and the grain size is below about 30.mu.m. It is evident that reheat cracking susceptibility can be eliminated or reduced by carefully controlling the welding parameters such that a refined structure is produced in the coarse grained heat affected zone.

  • PDF