• Title/Summary/Keyword: Coanda jet

Search Result 48, Processing Time 0.025 seconds

Optimum Design of a Micro-fluidic Oscillator (유체 진동자의 최적 설계)

  • 노유정;윤성기;김문언
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.22-30
    • /
    • 2004
  • A micro-fluidic oscillator is used to control a linear actuator in a dynamic microsystem. The pressure difference at its two output ports causes the linear actuator to move, and it is a standard of judging the performance of the oscillator. The performance can be improved by optimizing the geometry of the oscillator, which has to enable fluid jet to switch at low inlet velocity. For this, in this study the relationship between the pressure coefficient (difference) and geometric parameters is obtained through the analysis using the software FLUENT. From the results the optimized model that maximize the output pressure difference is obtained by using a cyclic coordinate method that is one of optimization methods. As a result not only the performance is improved, but also the working range is more widen.

Research of stability about aerodynamic levitation using jet (제트를 이용한 구체 부양 안정성 연구)

  • Han, Song-Lee;Yun, Tae-Gyun;Gu, Jun-Mo
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.305-309
    • /
    • 2013
  • 본 연구에서는 유체역학적인 후류 효과를 제어하고 항력을 이용하여 구체를 안정적으로 부양하는 방법을 해석 및 실험적으로 고찰하였다. 물체를 공중에 부양할 때는 물체가 받는 중력과 제트에 의하여 공급되는 항력이 평형을 이루어야 한다. 이 때 공기의 흐름의 레이놀즈 수에 따라 공기가 구체를 지나가며 구체후면에 생기는 후류에 의하여 부양상태가 불안정하게 될 수 있다. 구체의 운동이 제트에 의하여 안정되는 현상은 베르누이 및 코안다 효과로 설명할 수 있다. 에디슨을 이용하여 레이놀즈 수에 따른 실린더에 작용하는 항력과 후류에 의한 불안정화 힘을 해석적으로 구하였으며 이를 실험적으로 고속카메라를 이용하여 부양 거리, 안정도 등을 측정하여 비교하였다. 고찰 결과 레이놀즈 수가 작을수록 더 안정됨을 확인하였다.

  • PDF

Operation Limit of Flow Control for a Bistable Fluidic Valve

  • Lee, Ji Ung;Hong, Ji-Seok;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.389-394
    • /
    • 2017
  • The limitation of flow control for a bistable fluidic valve has been investigated. The physical model of the fluidic valve includes two main flow outlets and two control flow inlets. The experiments were conducted with pressure regulators, mass flow meters, and piezo sensors to analyze flow switching characteristics of the fluidic valve. The experimental data such as pressure and mass flow rate of control flows and the switching time of the main flow was obtained with various operating conditions. The operation limit of the fluidic valve is identified, and a model equation for pre-estimating the minimum control pressure to switch the direction of the main flow has been proposed.

A Numerical Study on a Circulation Control Foil using Coanda Effect (코앤다 효과를 이용한 순환 제어 날개의 수치적 연구)

  • J.J. Park;S.H. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.70-76
    • /
    • 2000
  • A numerical study on the viscous flow around a 2-dimensional circulation control foil is carried out for application on the field of naval architecture and ocean engineering. The governing equations are the RANS and the continuity equations. The equations are discretized by finite difference method and MAC method and the pressure poisson equation is calculate by a SOR method and an O-type non-staggered boundary fitted coordinate system which is overlapped near the slot is used to improve the numerical accuracy. Turbulence is approximated by a modified Baldwin-Lomax turbulence model. In the present paper, the Coanda effect on a 2-dimensional foil of a 20% thickness ellipse with modified rounded trailing edge has been numerically studied. The change in drag and lift of the foil with various jet momentums are calculated and compared to the experimental results to show good agreements.

  • PDF

A Study of PIV Analysis around 2-Dimensional Foil with Blowing (물분사장치를 이용한 2차원 익 주위의 PIV 해석에 관한 연구)

  • Oh, Kyoung-Gun;Cho, Dae-Hwan;Lee, Gyoung-Woo;Ko, Jae-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.45-49
    • /
    • 2006
  • The flow around a foil with waterjet was investigated using the two-frame PIV(CACTUS 3.1) system. After separation, unsteady recirculation & reattachment region was shown as a result at reading edge. Separation area was decreased to 1/3 more by waterjet system with coanda effect. Angle of attack and waterjet velocity was a variable in the experiment. Each parameters was controlled to $0^{\circ}{\sim}35^{\circ}$ and 0[m/s]${\sim}$9.2[m/s]. The separation of flow appearanced at first when the angle of attack is $17^{\circ}{\sim}18^{\circ}$. However, according to grew up of velocity, beginning of the separation was delayed. In this experiment, vortex and separation region was disappeared by blown when each parameters are low level, and separation controlled more certainly.

  • PDF

A Downwardly Deflected Symmetric Jet to prevent Edge Overcoating in Continuous Hot-Dip Galvanizing (연속식 용융아연도금 공정에서 단부 과도금 현상을 방지하기 위한 하향 대칭 분류유동 연구)

  • Ahn, Gi-Jang;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1156-1162
    • /
    • 2005
  • In this study, a noble method is proposed to prevent the edge overcoating (EOC) that may develop near the edge of the steel strip in the gas wiping process of continuous hot-dip galvanizing. In our past study (Trans. of the KSME (B), Vol. 27, No. 8, pp. $1105\~1113$), it was found that EOC is caused by the alternating vortices which are generated by the collision of two opposed jets in the region outside the steel strip. When the two opposed jets collide at an angle much less than $180^{o}$, non-alternating stable vortices are established symmetrically outside the steel strip, which lead to nearly uniform pressure on the strip surface. In order to deflect both jets downward by a certain angle, a cylinder with small diameter is installed tangentially to the exit of the lower lip of the two-dimensional jet. In order to find an optimum cylinder diameter, the three dimensional flow field is analysed numerically by using the commercial code, STAR-CD. And the coating thickness is calculated by using an integral analysis method to solve the boundary layer momentum equation. In order to compare the present noble method with the conventional baffle plate method to prevent the EOC, the flow field with a baffle plate is also calculated. The calculation results show that the tangentially installed cylinder at the bottom lip of the jet exit is more effective than the baffle plate to prevent EOC.

An experimental study on the open channel flow with plane wall jet inlet boundary condition and effects of a baffle (평면벽면분류의 유입경계조건을 가지는 개수로 유동 및 배플의 영향에 관한 실험적 연구)

  • 방병렬;설광원;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1399-1406
    • /
    • 1988
  • Flow behaviors of the open channel type flow with its geometric boundary conditions being similar to that of the Multi-Stage-Flash evaporator were studied qualitatively by measuring the velocity distribution. Without a baffle, the flow was in the shape of a simple submerged plane wall jet. At the downstream of this flow, the jet boundary made sharp curve toward the free surface ; this is because the entrainment of the ambient liquid is restricted by the free surface boundary, similar to the Coanda effect. According to the experimental results the level of the free surface appeared to be the most important parameter. The flow with a baffle was in much complicated shape ; especially the recirculating region at the downstream free surface was detected according to the experimental conditions imposed. Inlet liquid velocity, heights of the liquid level and the baffle, and the opening heights of sluice gate of the entrance were the most important parameters in the baffle flow.

A Study of the Thrust Vectoring Control Using Secondary Co- and Counter-Streams (2차 순유동과 역유동을 이용한 추력벡터 제어법에 관한 연구)

  • Lim Chae-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.109-112
    • /
    • 2004
  • Of late, the thrust vectoring control, using fluidic co-flow and counter-flow concepts, has been received much attention since it not only improves the maneuverability of propulsive engine but also reduces an additional material load due to the trailing control wings, which in turn reduce the aerodynamic drag. However, the control effects are not understood well since the flow field involves very complicated non: physics such as shock wave/boundary layer interaction, separation and significant unsteadiness. Existing data are not enough to achieve the effectiveness and usefulness of the thrust vectoring control, and systematic work is required for the purpose of practical applications In the present study, computational study has been performed to investigate the effects of the thrust vector control using the fluidic co-and counter-flow concepts. The results obtained show that, for a given pressure ratio, the thrust deflection angle has a maximum value at a certain suction flow rate, which is at less than $5\%$ of the mass flow rate of the primary jet. With a longer collar, the same vector angle is achievable with smaller mass flow rate.

  • PDF