• Title/Summary/Keyword: Coamplification-PCR

Search Result 2, Processing Time 0.028 seconds

Analysis of haplotype and coamplification PCR of dystrophin gene and Y-specific gene using PEP-PCR in single fetal cells

  • Choi, Soo-Kyung;Kim, Jin-Woo;Cho, Eun-Hee;Ryu, Hyun-Mee;Kang, Inn-Soo
    • Journal of Genetic Medicine
    • /
    • v.2 no.1
    • /
    • pp.35-39
    • /
    • 1998
  • Duchenne/Becker muscular dystrophy are the major neuromuscular disorders with X-linked recessive inheritance. Preimplantation diagnosis of sex determination has been generally used to avoid male pregnancies with these diseases. However, in order to determine if the embryo is normal, carrier or affected regardless of the sex, there is a need for a combined analysis of specific exon on dystrophin gene as well as sex determination of embryo using the same biopsied blastomere. If the exon deletion is not determinable, further diagnosis of carrier or patient can be performed by haplotype analysis. In this study, we applied the primer extension preamplification (PEP) method, which amplifies the whole genome, in 40 cases of single amniocyte and 40 cases of chorionic villus cell. We analysed haplotypes using two (CA)n dinucleotide polymorphic markers located at the end of 5' and 3' region of the dystrophin gene. Exon 46 of dystrophin gene and DYZ3 on chromosome Y were chosen as a target sequence for coamplification PCR. Upon optimizing the conditions, the amplification rates were 91.25% (73/80) for haplotypes (92.5% in amniocyte, 90% in chorionic villus cell) and 88.75% (71/80) for coamplification (85% in amniocyte, 92.5% in chorionic villus cell). The result of the study indicates that haplotypes analysis and coamplification of dystrophin and Y-specific gene using PEP can be applied to prenatal and preimplantation diagnosis in Duchenne/Becker muscular dystrophy making it possible to determine if the fetus is a carrier or an affected one.

  • PDF

Construction and analysis of painting probe for homogeneously staining regions in human neuroblastoma cell line IMR-32

  • Park, Sun-Hwa;Kim, Ho-Chung;Chun, Yong-Hyuck
    • Journal of Genetic Medicine
    • /
    • v.1 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • Neuroblastoma, a pediatric malignant neoplasm of neural crest origin, has a wide range of clinical virulence. The mechanisms contributing to the development of neuroblastomas are largely unclear, but non-random chromosomal changes identified over the past years suggest the involvement of genetic alterations. Amplification of the human N-myc proto-oncogene is frequently seen either in extrachromosomal double minutes or in homogeneously staining regions (HSRs) of aggressively growing neuroblastomas. N-myc maps to chromosome 2 band 24, but HSR have never been observed at this band, suggesting transposition of N-myc during amplification. We have constructed and analyzed the region-specific painting probe for HSR in neuroblastoma IMR-32 to determine the derivative chromosomes. Microdissection was performed on HSR using an inverted microscope with the help of microglass needles and an micromanipulator. We pretreated the microdissected fragments with Topoisomerase I which catalyzes the relaxation of supercolled DNA, and performed two initial rounds of DNA synthesis with T7 DNA polymerase followed by conventional PCR to enable the reliable preparation of Fluorescent in situ hybridization probe from a single microdissected chromosome. With this method, it was possible to construct the region-specific painting probe for HSR. The probe hybridized specifically to the HSRs of IMR-32, and to 2p24, 2p13 of normal chromosome. Our results suggest there was coamplification of N-myc together with DNA of the chromosome 2p24 and 2p13. Moreover, the fluorescent signals for the amplified chromosomal regions in IMR-32 cells were also easily recognized at a Thus this painting probe can be applied to detect the similar amplification of N-myc in neuroblastoma tissue, and the probe pool for HSR may be used to identify the cancer-relevant genes.

  • PDF