• 제목/요약/키워드: Coalescence Load

검색결과 23건 처리시간 0.028초

다중균열 구조물의 소성붕괴거동 평가 (Evaluation of Plastic Collapse Behavior for Multiple Cracked Structures)

  • 문성인;장윤석;김영진;이진호;송명호;최영환;황성식
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1813-1821
    • /
    • 2004
  • Until now, the 40% of wall thickness criterion, which is generally used for the plugging of steam generator tubes, has been applied only to a single cracked geometry. In the previous study by the authors, a total number of 9 local failure prediction models were introduced to estimate the coalescence load of two collinear through-wall cracks and, then, the reaction force model and plastic zone contact model were selected as the optimum ones. The objective of this study is to estimate the coalescence load of two collinear through-wall cracks in steam generator tube by using the optimum local failure prediction models. In order to investigate the applicability of the optimum local failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two collinear through-wall cracks in steam generator tube were carried out. Thereby, the applicability of the optimum local failure prediction models was verified and, finally, a coalescence evaluation diagram which can be used to determine whether the adjacent cracks detected by NDE coalesce or not has been developed.

Strength failure behavior of granite containing two holes under Brazilian test

  • Huang, Yan-Hua;Yang, Sheng-Qi;Zhang, Chun-Shun
    • Geomechanics and Engineering
    • /
    • 제12권6호
    • /
    • pp.919-933
    • /
    • 2017
  • A series of Brazilian tests under diameter compression for disc specimens was carried out to investigate the strength and failure behavior by using acoustic emission (AE) and photography monitoring technique. On the basis of experimental results, load-displacement curves, AE counts, real-time crack evolution process, failure modes and strength property of granite specimens containing two pre-existing holes were analyzed in detail. Two typical types of load-displacement curves are identified, i.e., sudden instability (type I) and progressive failure (type II). In accordance with the two types of load-displacement curves, the AE events also have different responses. The present experiments on disc specimens containing two pre-existing holes under Brazilian test reveal four distinct failure modes, including diametrical splitting failure mode (mode I), one crack coalescence failure mode (mode II), two crack coalescences failure mode (mode III) and no crack coalescence failure mode (mode IV). Compared with intact granite specimen, the disc specimen containing two holes fails with lower strength, which is closely related to the bridge angle. The failure strength of pre-holed specimen first decreases and then increases with the bridge angle. Finally, a preliminary interpretation was proposed to explain the strength evolution law of granite specimen containing two holes based on the microscopic observation of fracture plane.

일축압축 상태하 다중 불연속면의 파괴에 대한 연구 (Fracture of Multiple Flaws in Uniaxial Compression)

  • 사공명;안토니오보베
    • 터널과지하공간
    • /
    • 제11권4호
    • /
    • pp.301-310
    • /
    • 2001
  • 열 여섯개의 절리 면을 가진 석고 시편을 제작, 일축 압축 실험을 하여 관측된 결과를 절리 면이 두 개 및 세개 가진 시편의 실험 결과와 비교하였다. 그 결과 다중 절리면(열여섯 면)에서 관측된 익형(翼形)크랙, 이차 크랙, 연절리 (連節理) 유형은 절리가 두 개 및 세 개를 가진 시험체와 비슷한 형상을 보였다. 익형 크랙은 절리면과 일정한 각도를 유지한 상태에서 시작하여 안정적으로 진전, 최대 압축응력 방향으로 발달하였으며 이차 크랙 또한 안정적인 진전 양상을 보였으나 높은 하중 상태에서 이차 크랙은 불안정한 진전을 보이며 연절리 현상을 보였다. 이차 크랙의 종류로는 유사 공면(共面) 및 사면(斜面) 이차 크랙이 관측되었다. 연절리 현상은 익형 크랙과 이차 크랙에 의한 절리면의 연결로 나타나며 본 실험에서 네 종류의 연절리 현상이 관측되었다. 관측된 연절리의 발생 형태, 익형 크랙 및 이차 크랙의 초기 발생 응력은 절리면의 간격, 연속성, 경사각, 단선(短線)각도와 절리면의 배열과 관련이 있다.

  • PDF

Mk-계수를 고려한 용접부 복수 표면균열 진전수명 평가 (Fatigue Life Estimation of Welded Joints by using Mk-factor under a Propagation Mechanism of Multiple Collinear Surface Cracks)

  • 한승호;한정우;신병천;김재훈
    • Journal of Welding and Joining
    • /
    • 제22권4호
    • /
    • pp.73-81
    • /
    • 2004
  • Failure mechanisms of welded joints under fatigue loads are interpreted that multiple collinear surface cracks initiating randomly along the weld toes propagate under the mutual interaction and coalescence of adjacent two cracks. To estimate fatigue crack propagation life for three types of the representative welded joints, i.e. non-load carrying cruciform, cover plate and longitudinal stiffener joint, the stress intensity factors at the front of the surface cracks have to be calculated, which are influenced strongly by the geometry of attachments, weld toes and the crack shapes. For the effective calculation of the stress intensity factors the Mk-factor was introduced which can be derived by a parametric study performed by FEM considering influence of the geometrical effects. The fatigue life of the cruciform joint was estimated by using the Mk-factors and the method considering the propagation mechanisms of the multiple surface cracks. Analysis results for the fatigue life had a good agreement with that of experiment.

Simulation of fracture mechanism of pre-holed concrete model under Brazilian test using PFC3D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Smart Structures and Systems
    • /
    • 제22권6호
    • /
    • pp.675-687
    • /
    • 2018
  • In the previous studies on the porous rock strength the effect of pore number and its diameter is not explicitly defined. In this paper crack initiation, propagation and coalescence in Brazilian model disc containing a single cylindrical hole and or multiple holes have been studied numerically using PFC3D. In model with internal hole, the ratio of hole diameter to model diameter was varied between 0.03, 0.17, 0.25, 0.33, and 0.42. In model with multiple hole number of holes was different in various model, i.e., one hole, two holes, three holes, four holes, five holes, six holes, seven holes, eight holes and nine holes. Diameter of these holes was 5 mm, 10 mm and 12 mm. The pre-holed Brazilian discs are numerically tested under Brazilian test. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured. The mechanism of cracks propagation in the wall of the ring type specimens is also studied. In the case of multi-hole Brazilian disc, the cracks propagation and b cracks coalescence are also investigated. The results shows that breaking of the pre-holed disc specimens is due to the propagation of radially induced tensile cracks initiated from the surface of the central hole and propagating toward the direction of diametrical loading. In the case of disc specimens with multiple holes, the cracks propagation and cracks coalescence may occur simultaneously in the breaking process of model under diametrical compressive loading. Finally the results shows that the failure stress and crack initiation stress decreases by increasing the hole diameter. Also, the failure stress decreases by increasing the number of hole which mobilized in failure. The results of these simulations were comprised with other experimental and numerical test results. It has been shown that the numerical and experimental results are in good agreement with each other.

Strength Degradation from Contact Fatigue in Self-toughened Glass-ceramics

  • Lee, Kee Sung;Kim, Do Kyung;Woo, Sang Kuk;Han, Moon Hee
    • The Korean Journal of Ceramics
    • /
    • 제7권2호
    • /
    • pp.63-69
    • /
    • 2001
  • We investigated strength degradations from cyclic contact fatigue in self-toughened glass-ceramics. Hertzian indentation was used to induce cyclic contact load. Dynamic fatigue was also performed with changing stress rates from 0.01 to 10000 MPa/sec. After that, strength data and fracture origins were analysed. As the number of contact cycles increased or stressing rate decreased, severe strength degradation occurred by as much as 50% because of radial cracks developed from microcrack coalescence.

  • PDF

A fracture mechanics simulation of the pre-holed concrete Brazilian discs

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Nezamabadi, Maryam Firoozi
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.343-351
    • /
    • 2018
  • Brazilian disc test is one of the most widely used experiments in the literature of geo-mechanics. In this work, the pre-holed concrete Brazilian disc specimens are numerically modelled by a two-dimensional discrete element approach. The cracks initiations, propagations and coalescences in the numerically simulated Brazilian discs (each containing a single cylindrical hole and or multiple holes) are studied. The pre-holed Brazilian discs are numerically tested under Brazilian test conditions. The single-holed Brazilian discs with different ratios of the diameter of the holes to that of the disc radius are modelled first. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured and the crack propagation mechanism around the wall of the ring is investigated. The crack propagation and coalescence mechanisms are also studied for the case of multi-holes' concrete Brazilian discs. The numerical and experimental results show that the breaking mechanism of the pre-holed disc specimens is mainly due to the initiation of the radially induced tensile cracks which are growth from the surface of the central hole. Radially cracks propagated toward the direction of diametrical loading. It has been observed that for the case of disc specimens with multiple holes under diametrical compressive loading, the breaking process of the modelled specimens may occur due to the simultaneous cracks propagation and cracks coalescence phenomena. These results also show that as the hole diameter and the number of the holes increases both the failure stress and the crack initiation stress decreases. The experimental results already exist in the literature are quit agree with the proposed numerical simulation results which validates this simulation procedure.

고온하 304 스테인리스강의 크리프-피로상호작용하의 미소표면균열에 관한 파괴거동 (Micro-Surface-Cracks Behavior of 304 Stainless Steel Under Creep-Fatigue Interaction at Elevated Temperature)

  • 서창민;이상돈;조일현
    • 한국해양공학회지
    • /
    • 제2권2호
    • /
    • pp.104-111
    • /
    • 1988
  • This paper deals with the micro-surface-cracks behavior on the unnotched smooth specimens of Type 304 stainless steel at $593^{\circ}C$ in air under creep and creep-fatigue conditions that have 10 mim and 1 min load holding times respectively. The behaviors of the micro-surface-cracks have been visualized by means of surface replica method and optical micro-photography. The quantitative characteristics of initiation, growth and coalescence of micro-surface-cracks have been investigated by observing and measuring the crack growth behaviors. some of the important results are as follows: Main crack initiates at grain boundary in the early stage(10 to 20%)of its life time and grows through coalescence and finally leads to fracture. The distribution of micro-surface-crack length, 2a, can be plotted against the composite Weibull distribution. The growth rate of the main crack can be plotted against the stress intensity factor, crack tip opering displacement and J integral.

  • PDF

Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

  • Haeri, Hadi;Mirshekari, Nader;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.605-617
    • /
    • 2020
  • In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 × 60 × 190 mm and internal hole of 75 × 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.

Effect of local web buckling on the cyclic behavior of reduced web beam sections (RWBS)

  • Akrami, Vahid;Erfani, Saeed
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.641-657
    • /
    • 2015
  • Application of reduced web beam section (RWBS) as a sacrificial fuse element has become a popular research field in recent years. Weakening of beam web in these connections may cause local web buckling around the opening area which can affect cyclic behavior of connection including: maximum load carrying capacity, strength degradation rate, dissipated energy, rotation capacity, etc. In this research, effect of local web buckling on the cyclic behavior of RWBS connections is investigated using finite element modeling (FEM). For this purpose, a T-shaped moment connection which has been tested under cyclic loading by another author is used as the reference model. Fracture initiation in models is simulated using Cyclic Void Growth Model (CVGM) which is based on micro-void growth and coalescence. Included in the results are: effect of opening corner radii, opening dimensions, beam web thickness and opening reinforcement. Based on the results, local web buckling around the opening area plays a significant role on the cyclic behavior of connection and hence any parameter affecting the local web buckling will affect entire connection behavior.