• Title/Summary/Keyword: Coal-Ash

Search Result 709, Processing Time 0.02 seconds

Bloating mechanism for coal ash with iron oxide (철분이 많이 함유된 석탄회의 발포거동)

  • Lee, Ki Gang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.77-83
    • /
    • 2014
  • The purpose of this study was to figure out the impacts of iron oxide types and dosages to bloating when producing artificial lightweight aggregates by utilization of recycled resources such as bottom-ash, reject-ash and dredgedsoil. In order to figure out chemical characteristics of raw materials, XRD and XRF analyses were performed. 50 wt% of dredged-soil, 15 wt% of bottom-ash and 35wt.% of reject-ash were mixed, then the amount of iron oxide was varied at 5 to 30 wt% with intervals of 5 wt% with $Fe_2O_3$ and $Fe_3O_4$ respectively. As molded aggregates were sintered by rapid sintering in intervals of $40^{\circ}C$ from $1060^{\circ}C$ to $1180^{\circ}C$, specific gravity and water absorption were measured. As a result, the artificial lightweight aggregate with iron oxide of 10~15 vol% showed the lowest specific gravity, and it was identified that the more iron oxide vol% increases, the more specific gravity increases because of liquid phase sintering.

Combustion and thermal decomposition characteristics of brown coal and biomass

  • Kim, Hee Joon;Kasadani, Yuichi;Li, Liuyun;Shimizu, Tadaaki;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.373-377
    • /
    • 2012
  • Among the fossil fuels, the brown coal is a great deal of resources. However, it is hardly used due to the high moisture content and low calorific value. It has both the week points such as spontaneous combustion and high volatile content and the strong points such as the low-sulfur and low ash content. If we overcome these week points, the using amount of brown coal would be increased. Also, it is well known that biomass is one of the important primary renewable energy sources because of carbon neutral energy. Furthermore, the utilization of biomass has been more and more concerned with the depletion of fossil fuel sources as well as the global warming issues. Combustion and thermal decomposition of biomass is one of the more promising techniques among all alternatives proposed for the production of energy from biomass. In this study, combustion of brown coals and mushroom waste was done. Mass change of samples and emission of hydrocarbon components were measured. As the results, we obtained combustion rate constant. Also activation energy was calculated in char combustion step. Hydrocarbon components were more generated in low oxygen concentration than high. Emission amount of hydrocarbon components in mushroom waste was significantly increased comparing to brown coal.

Kinetic Studies of the Catalytic Low Rank Coal Gasification under CO2 Atmosphere (CO2분위기하에서 저급석탄 촉매가스화 반응 특성 연구)

  • Park, Chan Young;Park, Ji Yun;Lee, Si Hoon;Rhu, Ji Ho;Han, Moon Hee;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1086-1092
    • /
    • 2012
  • In this study, kinetic studies and analysis of the produced syngas were conducted for low rank coal gasification under $CO_2$ atmosphere. 6 coals were analyzed to measure amount of sulfur and ash by proximate and ultimate analyses. And then they were analyzed to select suitable sample by using Thermogravimetric analyzer (TGA). Selected coal sample Samhwa was mixed with catalysts. Mixed samples with catalysts were used to get activation energy under $CO_2$ atmosphere by using Kissinger's method and shrinking core model (SCM). Also, analysis of produced syngas was performed by Gas Chromatography (GC). In this experiment, activation of the $K_2CO_3$ was the best performance, and result of the analysis of the syngas showed similar trend with result of the activation energy.

Fabrication of K-PHI Zeolite Coated Alumina Hollow Fiber Membrane and Study on Removal Characteristics of Metal Ions in Lignin Wastewater

  • Zhuang, XueLong;Shin, Min Chang;Jeong, Byeong Jun;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.174-179
    • /
    • 2021
  • Recently, hybrid coal research is underway to upgrade low-grade coal. The hybrid coal is made by mixing low-grade coal with bioliquids such as molasses, sugar cane, and lignin. In the case of lignin used here, a large amount of lignin is included in the wastewater of the papermaking process, and thus, research on hybrid coal production using the same is attracting attention. However, since a large amount of metal ions are contained in the lignin wastewater from the papermaking process, substances that corrode the generator are generated during combustion, and the amount of fly ash is increased. To solve this problem, it is essential to remove metal ions in the lignin wastewater. In this study, metal ions were removed by ion exchange with a alumina hollow fiber membrane coated with K-Phillipsite (K-PHI) zeolite. The alumina hollow fiber membrane used as the support was prepared by the nonsolvent induced phase separation (NIPS) method, and K-PHI seeds were prepared by hydrothermal synthesis. The prepared K-PHI seed was seeded on the surface of the support and coated by secondary growth hydrothermal synthesis. The characteristic of prepared coating membrane was analyzed by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDX), and the concentration of metal ions before and after ion exchange was measured by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). The extraction amount of K+ is 86 mg/kg, and the extraction amount of Na+ is 54.9 mg/kg. Therefore, K-PHI zeolite membrane has the potential to remove potassium and sodium ions from the solution and can be used in acidic lignin wastewater.

Influence of Fly Ash Application on Growth and Yield of Corn(Zea mays L.) (석탄회(石炭灰)(Fly Ash) 시용(施用)이 옥수수의 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Kim, Jeong-Je;Yang, Jae-Eui;Cho, Byong-Ok;Choi, Byeong-Seon;Park, Jong-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.249-254
    • /
    • 1992
  • This research was conducted to investigate the effects of fly ash applications on growth and yield parameters of corn (Zea mays L.), and soil chemical properties. Corn height at silking stage, and height and dry matter ratio at harvesting stage were enhanced by applications of fly ashes derived from bituminous coal and anthracite, respectively. Effects of fly ash treatment on growth parameters of corn were varied with kinds and levels of fly ash application and growth periods, but relatively small without revealing a major negative effect as compared to the control. Yield of corn was increased by applying fly ash of anthracite origin, but other yield components were not influenced negatively by fly ash treatment. Soil total carbon contents, cation exchange capacity, and phosphorus contents of soils sampled after harvest of corn were significantly increased by fly ash treatment, although there were slightly different effects according to kinds and levels of fly ash application. Exchangeable cations of soils were varied within an experimental error range. Phosphorus taken up by corn was enhanced by treating fly ash of the bituminous coal to the soil and there were a positive correlation between phosphorus uptake and soil Phosphorus level. Cation uptake by corn was changed a little, but no significant reduction was observed in cation uptake due to fly ash treatment. It seems to be difficult to figure out the mechanism of fly ash effects on growth and nutrient uptake by corn with one year field experiment, however treatment of fly ash enhanced some parameters of growth and yield, and nutrient uptake by corn without revealing any major negative effects. To determine the value of fly ash as a fertilizer source, continuous researches under various soil and crop conditions were considered to be necessary.

  • PDF

Acid Gas Removal Characteristics for Syngas using Fe Oxidization Process (철 산화법을 이용한 합성가스내 산성가스 제거 특성)

  • Lee, Seung-Jong;Hwang, Sang-Yeon;Yoo, Young-Don;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.804-807
    • /
    • 2007
  • The acid gas removal (AGR) system was designed and installed to remove $H_2S$ in coal syngas in the pilot-scale coal gasification system for producing chemicals like Dimethyl Ether(DME). The syngas from the coal gasification at the rate of $100{\sim120$ $Nm^3$/hr included pollutants such as fly ash. $H_2S$, COS, $NH_3$, etc. The designed temperature and pressure of the AGR system are below 50oC and 8 kg/$cm^2$. Fe-chelate was used as an absorbent. $H_2S$ was stably removed below 0.5 ppm in the AGR system when the concentration of $H_2S$ was $150{\sim}450$ ppm. The pH of Fe-chelate solution was also stably maintained between $8{\sim}9$. FeMgO absorbent was also tested to remove $H_2S$ in the lab-scale AGR system and $H_2S$ was also removed below 0.5 ppm in the initial operation.

  • PDF

An Experimental Study on Mode Switching from Air-firing to Oxy-firing in Pilot-scale Combustion Systems (미분탄 순산소 연소 운전 모드 전환 과정에 대한 Pilot 규모 설비에서의 실험적 연구)

  • Choi, Chong-Gun;Na, Ik-Hwan;Lee, Jae-Wook;Chae, Tae-Young;Yang, Won;Kim, Young-Ju;Kim, Jong-An;Seo, Sang-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.3
    • /
    • pp.12-20
    • /
    • 2011
  • Oxy-coal combustion for $CO_2$ capture in coal power plants entails a mode switching from air-firing to oxyfiring. In this study, procedure of the mode switching was investigated and discussed through experiments in pilot scale facilities: (1) a 0.3 $MW_{th}$ furnace with a vertical single burner and a FGR(Flue Gas Recirculation) system (2) a 1 $MW_{th}$ furnace with horizontal 4 burners and a FGR system. Principle of the mode switching was established and performed with control of FD fan, FGR fan, ID fan and oxygen flow rates. We have found that equivalence ratio in the oxy-firing mode should be increased more than that in the air-firing to achieve stable mode switching. Control of FD, ID and FGR fans should be performed carefully in the mode switching, in the sense of complete combustion and flame attachment. Moisture contents in the ash and the flue gas recycled to the primary oxidizer stream should be removed to prevent condensation, corrosion and duct clogging.

Development of transient-state simulation model for slag flow on the wall of an entrained coal gasifier (분류층 가스화기 벽면의 슬래그거동에 대한 비정상해석 모델 개발)

  • Kim, Mukyeong;Ye, Insoo;ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.197-200
    • /
    • 2015
  • Understanding the slag flow behavior is important in an entrained coal gasifier for its influence of ash discharge and wall heat transfer rate. This study presents a new model to predict the transient behavior of the liquid and solid slag layers. Unlike the previous steady-state model, the solid slag layer was included in solving the governing equations in order to identify the temporal and spatial transformation between the solid-liquid slag, rather than treating the solid region as a boundary condition of the liquid layer. The performance of the new model was evaluated for changes in the slag deposition rate (${\pm}10%$) and gas temperature (${\pm}50K$) in a simple cylindrical gasifier. The results show that the characteristic times to reach a new steady-state ranged between 80 s to 180s for the changes in the two parameters. Because the characteristic times of the gasifier temperature and slag deposition rate by changes in the coal type and/or operating conditions would be almost instantaneous, the time-scale for the slag thickness at the bottom of the gasifier to stabilize was much larger.

  • PDF

A Study on the Characterization of Anthracite Fly Ash for the Fabrication of Calcinated Brick (소성블릭 제조를 위한 무연탄 석탄회의 특성 연구)

  • Yu Yeon-Tae;Kim Byoung-Gyu;Choi Young-Yoon;Nam Chul-Woo;Lee Yeng-Seok;Kim Cheon-Sun
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.16-23
    • /
    • 2004
  • To increase the recycling rate of anthracite fly ash, the properties of anthracite fly ash were compared to that of bituminous fly ash. Especially, the high temperature properties of the fly ash are investigated by using thermal analysis, high temperature microscope and X-ray diffraction analysis for utilizing anthracite fly ash to prepare the calcinated bricks. The average ratio of $A1_2$$O_3$/$SiO_2$ for anthracite is 0.62 and the ratio for bituminous is 0.34. The content of $SiO_2$ in anthracite fly ash was higher than that of bituminous fly ash. The $A1_2$$O_3$ of anthracite fly ash reacted with the $A1_2$$O_3$ in the fly ash and formed new mullite crystal at over $1000^{\circ}C$, so anthracite fly ash showed high fire resistance. And, the fly ash mixtures having kaolin were prepared, and then extruded in vacuum to evaluate the extruding property of anthracite fly ash mixture. The extruding velocity was decrease with increasing the addition amount of fly ash in the mixture, and the maximum addition amount of fly ash that could be extruded was 60 wt%.

Characteristics of Coal Ash Melting in Bench Scale Entrained Coal Gasifier (Bench Scale급 기류층 석탄가스화기에서 회분의 용융 특성)

  • 정봉진;이중용;이계봉;윤용승
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.127-136
    • /
    • 1999
  • Bench Scale급 기류층 석탄가스화기에서 배출된 슬form의 특성을 파악하기 위해서 Drayton 석탄과 Kideco 석탄으로부터 생성된 슬래그의 조성, 형상, 잔존탄소함량 및 중금속 성분들을 분석하였다. Drayton 석탄 슬래그의 형상은 표면이 매끄럽고 단단하며 다공성을 띄면서 crack이 거의 없고 결정구조가 비정형인 반면에, Kideco석탄 슬래그의 경우는 표면이 거칠고 crack이 상당히 많이 존재하며 주결정상은 pyroxene과 anorthnite 등으로 이루어져있다. 슬래그의 재활용시 판단 기준이 되는 잔존탄소함량은 두 대상탄 모두 1% 이하를 나타내어 재활용이 가능하며, 슬래그의 용출수 분석결과 석탄중에 함유된 중금속은 슬래그중에 용융되어 안정한 화합물로 존재하므로 중금속 유출로 인한 2차적인 환경오염 문제는 없을 것으로 판단된다.

  • PDF