• Title/Summary/Keyword: Coal oil

Search Result 242, Processing Time 0.029 seconds

Physico-chemical characterization of individual particles emitted from the air pollution point sources (대기 점오염원에서 배출되는 개별입자상물질의 물리화학적 특성)

  • Park Jeong-Ho;Suh Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.761-770
    • /
    • 2005
  • Scanning electron microscopy / energy dispersive X-ray analyzer(SEM/EDX) has played an important role for evaluation the source of atmospheric particle because it is a powerful tool for characterizing individual particles. The SEM/EDX system provides various physical parameters like optical diameter, as well as chemical information for a particle-by-particle basis. The purpose of the study was to classify individual particle emitted from the point sources based on clustering analysis and physico-chemical analysis by SEM/EDX. The total of 490 individual particle were analyzed at 8 point sources including coal-fired power plant, incinerator, H-C oil boiler, and metal manufacturing industry. The main components were Si and AI in the coal-fired power plant, Cl and Na in the domestic waste Incinerator, S in the H-C oil boiler and S and Fe in the metal manufactory industry, respectively.

Analysis on the EU Energy Market Trends and Policies

  • Kim Eun-Sun;Koo Young-Duk;Park Young-Seo
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.2
    • /
    • pp.63-66
    • /
    • 2005
  • In 2000, the EU set up an energy policy related renewables use for electricity demand up to $22\%$ on the purpose of preventing energy exhaustion and world climate exchange. Technology development and energy production policy on coal, oil and natural gas focus on how to minimize their environmental effects since the world energy system will continue to be dominated by fossil fuels with almost $90\%$ of total energy supply in 2030. In the long run, the EU drives expansion policy of the renewable energy. If related policies and programs will show successful operation in the near future and will be resulted in increase of budget, we could expect the possibility of expansion of renewable energy market in Korea in the future.

Mineral Composition, Depositional Environment and Spectral Characteristics of Oil Shale Occurring in Dundgobi, Mongolia (몽골 돈디고비지역에서 산출되는 오일셰일의 광물조성, 퇴적환경 및 분광학적 특성)

  • Badrakh, Munkhsuren;Yu, Jaehyung;Jeong, Yongsik;Lee, Gilljae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.83-93
    • /
    • 2015
  • This study investigated genetic, mineralogical and spectral characteristics of oil shale and coal samples in Dundgobi area, Mongolia. Based the Rock/Eval and Total organic carbon (TOC) analysis, kerogen type, hydrogen quantity, thermal maturity and depositional environment were confirmed. Moreover, the mineral composition of oil shale and coal samples were analyzed by XRD and spectroscopy. The result of Rock Eval/TOC analysis revealed that the samples of Eedemt deposit are immature to mature source rocks with sufficient hydrocarbon potential, and the kerogen types were classified as Type I, Type II and Type III kerogen. On the other hand, the samples from Shine Us Khudag deposit were mature with good to very good hydrocarbon potential rocks where kengen types are defined as Type I, Type II/III and Type III kerogen. According to the carbon and sulfur contents, the depositional environment of the both sites were defined as a freshwater depositional environment. The XRD analysis revealed that the mineral composition of oil shale and coal samples were quartz, calcite, dolomite, illite, kaolinite, montmorillonite, anorthoclase, albite, microcline, orthoclase and analcime. The absorption features of oil shale samples were at 1412 nm and 1907 nm by clay minerals and water, 2206 nm by clay minerals of kaolinite and montmorillonite and 2306 nm by dolomite. It is considered that spectral characteristics on organic matter content test must be tested for oil shale exploration using remote sensing techniques.

Synergistic Effects and Mechanism of Coal/Polypropylene Coliquefaction (석탄과 폴리프로필렌의 공동액화시 상승효과 및 반응기구)

  • Jeong, Daeheui;Kim, Seungrok;Lee, Jinyoung;Jeong, Taejin;Han, Choon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.742-748
    • /
    • 1998
  • Experiments have been conducted to investigate synergistic effects and mechanisms of the Alaskan subbituminous coal/polypropylene (PP). Coliquefaction of coal/PP gave the synergistic effect in yields by 17% compared to independent liquefactions of coal or PP at $430^{\circ}C$. To analyse coliquefaction mechanisms, the second and zeroth order kinetic models were developed for coal and PP conversions respectively. When the models were simulated to fit coliquefaction results, those represented results successfully with the correlation coefficient of 0.99. The amount of tetralin needed to liquefy unit mass of coa 1(${\beta}$) was also calculated using the developed model. According to the calculated results, $\beta$ increased from 0.4 to 1.0 as the coliquefaction temperature increased from $410^{\circ}C$ to $470^{\circ}C$. This indicated that tetralin lowered the molecular weight of oil produced, and this phenomenon was recognized by the GPC analyses. Furthermore, it was found that tetralin prohibited the liquefaction of PP when coal was not added. On the other hand, tetralin was believed to act as a hydrogen-donor solvent to coal rather than prohibit PP liquefaction during coliquefaction. Therefore, the liquefaction rate of PP increases and synergistic effects in oil yields are mainly due to the increase in PP liquefaction during coal/PP coliquefaction.

  • PDF

A Study on the Perspective of Coal Industry Policy and the Optimal Storage of Korea (한국 석탄산업 정책의 전망과 적정 비축 규모에 관한 연구)

  • Yu, Won-Keun;Choi, Ho-Yeong
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.103-113
    • /
    • 2019
  • The purpose of this study is to recognize the importance of sustaining the coal industry in spite of the declaration of new climate change regime. Due to the importance to have the ability to control the supply and demand for energy source, this study will present the ground supporting the need to save some fixed amount of coal to carry out this task. The relative quantity of fossil fuel like coal and oil consumed as an energy source is reduced due to the increasing portion of renewable energy sources. Nevertheless, we can verify the fact that the position as a main energy source in demand for and supply of electric power is still valid. And the optimal amount of coal storage is estimated through the average annual amount of demand derived from preceding studies. In this context, it is very urgent problem to maintain the coal industry as a industrial policy for the sustainable national economic growth through the coal storage policy and to determine the optimal amount of annual storage.

Domestic Bituminous Coal's Calorific Value Trend Analysis (2010~2014) and Carbon Emission Factor Development (국내 유연탄의 발열량 추이 분석(2010~2014년) 및 탄소배출계수 개발)

  • Kim, Min wook;Cho, Changsang;Jeon, Youngjae;Yang, Jinhyuk;Sin, Hochul;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.513-520
    • /
    • 2016
  • Korea's energy consumption has been constantly increasing. Final energy consumption was increased by an annual average of 2.9% compared to 2010. The consumption of all energy sources except for its oil was increased during the same time. While electric demand has increased coal consumption increased rapidly. Therefore, calorfic value and carbon emission factor development can improve the quality of Korea's greenhouse gas inventory. Calorific value is the amount of heat generated while burning coal. Caloric value is one of the most important factors in the development of carbon emission factors. Calorific value is used as the basis for the analysis of the various energy statistics. This study has calculated the other bituminous coal and coking coal's calorfic value by the data received from domestic coal-fired power plants and steel manufacturer. Calorofic value's trend analysis period is the year of 2010~2014. Through analyzing the carbon content it was calculated the carbon emission factor. The bituminous coal and coking coal's uncertainty analysis was performed using a Monte Carlo simulation.

Pre-feasibility Study in Mongolia Tavan Tolgoi Coal Bed Methane (Tavan Tolgoi Coal Bed Methane에 대한 몽골에서의 타당성 조사)

  • CHO, WONJUN;YU, HYEJIN;LEE, JESEOL;LEE, HYUN CHAN;JU, WOO SUNG;LIM, OCKTAEK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.124-129
    • /
    • 2018
  • Methane is the cleanest fuel and supplies by many distributed type: liquefaction natural gas (LNG), compressed natural gas (CNG), and pipeline natural gas (PNG). Natural gas is mainly composed by methane and has been discovered in the oil and gas fields. Coal bed methane (CBM) is also one of them which reserved in coalbed. This significant new energy sources has emerge to convert an energy source, hydrogen and hydrogen-driven chemicals. For this CBM, this paper was written to analyze the geological analysis and reserves in Mongolian Tavan Tolgoi CBM coal mine and to examine the application field. This paper is mainly a preliminary feasibility report analyzing the business of Tavan Tolgoi CBM and its exploitable gas.

Density Distributions of Metallic Compounds in Particulate Matters (粒子狀 物質中 金屬成分의 密度分布)

  • 허문영;김형춘;손동헌
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.9-18
    • /
    • 1986
  • For identification and apportionment of sources emitting particulate matters in environment, the multi-elemental characterization of size-density fractionated particulate matters was carried out. Eight types of samples were tested; soil, flyash released from burning of bunker-Coil, diesel oil, coal, and soft coal, urban road-way dust, urban dust fall, and airborne particulate matter. The fractions of particulate matters obtained by heavy liquid separation methos with a series of dichloromethane-bromoform were then analyzed using atomic absorption spectrophotometry for Ni, Cr, Cu, An, Fe, Al, and Mg. Each sample showed a different concentration profile as a function of density, and a number of useful conclusions concerning characterization of elemental distribution were obtained. From the density distributions of elements in soil, the maximum value was found for all elements in the density range of 2.2 $\sim 2.9g.cm^{-3}$, including the density of $SiO_2$. However, the distribution of metallic compounds with the density lower than $2.2g.cm^{-3}$ was prevalent in urban roadway dust, urban dust fall, and airborne particulate matter. And the density distribution curves of these urban dusts also have the higher distribution at the density of 2.2 - 2.9g.cm^{-3}$, including the density of wind-blown silica. This tendency generally was prevalent in the natural source elements, such as Al, Fe, Mn, and Mg. The maximum values were found in the density ranges of 1.3 $\sim 2.2g.cm^{-3}$ from the density distribution of elements in oil fired flyash. These distributions of anthropogenic source elements, such as Zn, Ni, Cu, and Cr were higher predominately than those of natural source elements. And the higher distribution was found in the density range of $2.2 \sim 2.9g.cm^{-3}$ from the density distribution of elements in coal and soft-coal fired flyash. These distributions showed similar patterns to soil. But anthropogenic source elements somewhat predominated at the density ranges of $1.3 \sim 2.2g.cm{-3} and 2.9g.cm^{-3}$ to soil. Therefore the higher distribution of anthropogenic source elements in the density ranges of $1.3 \sim 2.2g.cm^{-3} and 2.9g.cm^{-3}$ was considered as anthropogenic origin.

  • PDF

Study of fuel cell CHP-technology on electricity generation sector using LEAP-model (LEAP 모형을 이용한 연료전지 열병합발전설비 도입에 따른 온실가스배출저감 잠재량 분석)

  • Shin, Seung-Bok;Jun, Soo-Young;Song, Ho-Jun;Park, Jong-Jin;Maken, Sanjeev;Park, Jin-Won
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.230-238
    • /
    • 2009
  • We study about small gas engine and fuel cell CHP (Combined Heat and Power) as the technologies for energy conservation and $CO_2$ emissions reduction. Korea government plans to use them in near future. This study quantitatively analyzed energy consumption and $CO_2$ emissions reduction potential of small CHP instead of existing electric power plant (coal steam, combined cycle and oil steam) using LEAP (Long-range Energy Alternative Planning system) as energy-economic model. Three future scenarios are discussed. In every scenario similar condition for each CHP is used. Alternative scenario I: about 6.34% reduction in $CO_2$ emissions is observed in 2019 due to increase in amount of gas engine CHP and fuel cell CHP while coal use in thermoelectric power plant is almost stagnant. In alternative scenario II: a small 0.8% increase in $CO_2$ emission is observed in 2019 keeping conditions similar to alternative scenario I but using natural gas in combined cycle power plant instead of coal. During alternative scenario II overall $CO_2$ emission reduction is observed in 2019 due to added heat production from CHP. Alternative scenario III: about 0.8% reduction in $CO_2$ emissions is observed in 2019 using similar CHP as AS I and AS II. Here coal and oil are used in thermoelectric power plant but the quantity of oil and coal is almost constant for next decade.

Analysis of Carbon Emission from a Forward Osmosis and Reverse Osmosis Hybrid System for Water Reuse and Seawater Desalination (하수재이용 및 해수담수화를 위한 정삼투-역삼투 융합공정의 탄소배출량 분석)

  • Jeon, Jongmin;Kim, Suhan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.351-357
    • /
    • 2022
  • A conventional seawater reverse osmosis (SWRO) and a forward osmosis (FO) and reverse osmosis (RO) hybrid process to produce 1,000 m3/d of fresh water, were designed and compared in terms of carbon emission. When FO was adapted for the osmotic dilution, the required pressure for RO decreases, and thus energy consumption decreases. The decrease in carbon emission by decreased energy consumption (up to -0.73 kgCO2/m3 using coal as the energy source) was compared with the increase in carbon emission by the FO system (+0.16 kgCO2/m3), which is a function of various factors such as the number of FO modules and energy consumption. The comparison revealed that the FO-RO process causes less carbon emission compared with the SWRO process when the energy sources are coal and oil. However, if energy sources with low carbon emission such as solar, wind, and nuclear energy are selected, the carbon emission of the FO-RO process becomes higher than that of the SWRO process. This implies that the type of energy source is a key factor to determine the necessity of the FO-RO process from the aspect of carbon emission.