• Title/Summary/Keyword: Coal mine

Search Result 367, Processing Time 0.023 seconds

KDICical Characteristics and Microbial Activity of Streams Contaminated by The Abandoned Coal Mine Drainage (폐탄광 배수에 의해 오염된 하천의 화학적 특성과 미생물 활성)

  • Cho, Kyoung-Suk;Ryu, Hee-Wook;Chang, Young-Keun
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.365-373
    • /
    • 1996
  • A survey was carried out to investigate the contamination of streams by the acid mine drainage originated from the abandoned coal mines and coal refuse piles. The physico-KDICical characteristics such as pH, sulfate and elements concentrations in the water and sediment in streams were analyzed. Microbial activity in the sediment was evaluated by measuring dehydrogenase activities. At sites contaminated by acid mine drainage, the pH of the water and sediment declined to acidic range from neutral due to the accumulation of sulfate. The dehydrogenase activity ranged from 12 to $170{\mu}g-TPF{\cdot}g-dry\;soil^{-1}{\cdot}24h^{-1}$ at the contaminated sites, whereas uncontaminated sites had activities of 1,176~4,259 ${\mu}g-TPF{\cdot}g-dry\;soil^{-1}{\cdot}24h^{-1}$. The dehydrogenase activity was significantly affected by low pH of the sediment, indicating that high concentration of sulfate inhibited microbial activity. The concentrations of heavy metals such as Pb and Fe in contaminated sdeiment (37~46 ppm Pb; 46,000~464,000 ppm Fe) were much higher than those in the uncontaminated sediment. The concentration of Al in the contaminated water acidfied by coal mine drainage was in the range of 11 to 42 ppm. Compared with those in the uncontaminated sediment, the concentrations of Mn, Mg and Ca in contaminated sediment were low because of the leaching from soil to water by the acidfied stream water.

  • PDF

Application of Fuzzy Logic for Predicting of Mine Fire in Underground Coal Mine

  • Danish, Esmatullah;Onder, Mustafa
    • Safety and Health at Work
    • /
    • v.11 no.3
    • /
    • pp.322-334
    • /
    • 2020
  • Background: Spontaneous combustion of coal is one of the factors which causes direct or indirect gas and dust explosion, mine fire, the release of toxic gases, loss of reserve, and loss of miners' life. To avoid these incidents, the prediction of spontaneous combustion is essential. The safety of miner's in the mining field can be assured if the prediction of a coal fire is carried out at an early stage. Method: Adularya Underground Coal Mine which is fully mechanized with longwall mining method was selected as a case study area. The data collected for 2017, by sensors from ten gas monitoring stations were used for the simulation and prediction of a coal fire. In this study, the fuzzy logic model is used because of the uncertainties, nonlinearity, and imprecise variables in the data. For coal fire prediction, CO, O2, N2, and temperature were used as input variables whereas fire intensity was considered as the output variable.The simulation of the model is carried out using the Mamdani inference system and run by the Fuzzy Logic Toolbox in MATLAB. Results: The results showed that the fuzzy logic system is more reliable in predicting fire intensity with respect to uncertainties and nonlinearities of the data. It also indicates that the 1409 and 610/2B gas station points have a greater chance of causing spontaneous combustion and therefore require a precautional measure. Conclusion: The fuzzy logic model shows higher probability in predicting fire intensity with the simultaneous application of many variables compared with Graham's index.

Effects of chloride ion transport characteristics and water pressure on mechanical properties of cemented coal gangue-fly ash backfill

  • Dawei Yin;Zhibin Lu;Zongxu Li;Chun Wang;Xuelong Li;Hao Hu
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.125-137
    • /
    • 2024
  • In paste backfill mining, cemented coal gangue-fly ash backfill (CGFB) can effectively utilize coal-based solid waste, such as gangue, to control surface subsidence. However, given the pressurized water accumulation environment in goafs, CGFB is subject to coupling effects from water pressure and chloride ions. Therefore, studying the influence of pressurized water on the chlorine salt erosion of CGFB to ensure green mining safety is important. In this study, CGFB samples were soaked in a chloride salt solution at different pressures (0, 0.5, 1.5, and 3.0 MPa) to investigate the chloride ion transport characteristics, hydration products, micromorphology, pore characteristics, and mechanical properties of CGFB. Water pressure was found to promote chloride ion transfer to the CGFB interior and the material hydration reaction; enhance the internal CGFB pore structure, penetration depth, and chloride ion content; and fill the pores between the material to reduce its porosity. Furthermore, the CGFB peak uniaxial compression strain gradually decreased with increasing soaking pressure, whereas the uniaxial compressive strength first increased and then decreased. The resulting effects on the stability of the CGFB solid-phase hydration products can change the overall CGFB mechanical properties. These findings are significant for further improving the adaptability of CGFB for coal mine engineering.

Usage of Coal in the Paradigm Shift toward Sustainable Energy (지속가능 에너지 패러다임 변화속에서 석탄의 활용)

  • Park, Jay Hyun;Yang, In Jae;Lee, Jin Soo;Lee, Cheong Ryong
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.793-807
    • /
    • 2020
  • The policy for Green New Deal will promote the shift of the application to coal as feedstock from coal as fuel. Coal can be used as fuel for production of hydrogen and as feedstock materials such as synthetic graphite or activated carbon. Hydrogen is obtained from syngas produced through Steam carbon(SC), Water-Gas Shift(WGS), and Carbonation reactions, and these processes should be used in conjunction with CO2 sequestration technology. Anthracite has a potential in terms of cost advantage as a feedstock compared to a petroleum pitch, because Synthetic graphite is prepared by heat treating an anthracite with high rank to a graphitization temperature which is in the range of 2400~2800℃, in the presence of inorganic catalyst such as silicon or iron. From several studies, it has been confirmed that coal-based activated carbon(AC) is manufactured with quality similar to the large specific surface area and much micropore volume of lignin-based AC, can be prepared. Therefore it is expected that lignin-based AC is replaced to coal-based AC.

Guided wave formation in coal mines and associated effects to buildings

  • Uyar, Guzin G.;Babayigit, Ezel
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.923-937
    • /
    • 2016
  • The common prospect in diminishing mine-blast vibration is decreasing vibration with increasing distance. This paper indicates that, contrary to the general expectancy, vibration waves change their forms when they are travelling through the low velocity layer like coal and so-called guided waves moving the vibration waves to longer distances without decreasing their amplitudes. The reason for this unexpected vibration increase is the formation of guided waves in the coal bed which has low density and low seismic velocity with respect to the neighboring layers. The amplitudes of these guided waves, that are capable of traveling long distances depending on the seam thickness, are several times higher than that of the usual vibration waves. This phenomenon can many complaints from the residential areas very far away from the blasting sites. Thus, this unexpected behavior of the coal beds in the surface coal mines should also be considered in vibration minimization studies. This study developed a model to predict the effects of guided waves on the propagation ways of blast-induced vibrations. Therefore, vibration mitigation studies considering the nearby buildings can be focused on these target places.

Geochemistry of Acid Mine Water and Stream Sediment around the Donghae Coal Mine (동해탄광 주변 산성광산폐수와 하상퇴적물의 지구화학)

  • Oh, Dae Gyun;Kim, Jung Youp;Chon, Hyo Taek
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.213-220
    • /
    • 1995
  • Geochemistry of stream water and sediment collected in the vicinity of the Donghae coal mine in the Samchuk coalfied were investigated in order to evaluate the environmental impacts of acid mine drainage. The pH of stream water ranges from 2.85(at 2 km away from the mine) to 7.92(at uncontaminated tributary). The main cation and anion species in the upper stream are $Ca^{2+}$ and $SO_{4}{^2-}$, respectively. The level of pH and the amount of $HCO^{3-}$ in stream water increase to the downstream and where uncontaminated small tributaries are joining, and in the area covered with limestone. From the results of thermodynamic calculation, the main forms of iron in stream water are estimated as $Fe^{2+}$ and $FeSO_{4}{^0}$, and most of them could be precipitated as FeO(OH) with increase of pH. The white precipitates in stream sediments particularly found around the coal mine are proved to be $Al(OH)_3$ by XRD and XRF analysis. As a result of investigation for seasonal variation of AMD, the level of pH decreased and conductivity increased in dry season.

  • PDF

Stabilization of Arsenic in Soil around the Abandoned Coal-Mine Using Mine Sludge Pellets (광산슬러지 펠렛을 이용한 폐석탄광 주변 토양 내 비소 안정화 연구)

  • Ko, Myoung-Soo;Ji, Won-Hyun;Kim, Young-Gwang;Park, Hyun-Sung
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The purpose of this study was to assess the applicability of acid mine drainage sludge (AMDS) pellets for the arsenic (As) stabilization and to suggest an evaluation method for arsenic stabilization efficiency in soil around abandoned coal mines. The soil samples were collected from the agricultural field around Ham-Tae, Dong-Won, Dong-Hae, and Ok-Dong coal mine. The As concentration in soil was exceeding the criteria of soil pollution level, except for Ham-Tae coal mine. The AMDS pellets are more appropriate to use by reducing dust occurrence during the transport and application process than AMDS powder. In addition, AMDS pellets were maintained the As stabilization efficiency. The application of AMDS pellets for the As stabilization in soil was assessed by column experiments. The AMDS pellets were more effective than limestone and steel slag, which used as the conventional additives for the stabilization process. The As extraction by $0.43M\;HNO_3$ or $1M\;NaH_2PO_4$ solution were appropriate evaluation methods for evaluation of As stabilization efficiency in the soil.

Characteristics of Soil Chemical Properties in Abandoned Coal Mine Forest Rehabilitation Areas in Mungyeong, Gyeongsangbuk-do (경상북도 문경시 폐탄광 산림복구지 토양의 화학적 특성)

  • Jung, Mun Ho;Shim, Yon Sik;Kim, Tae Heok;Oh, Ji Young;Jung, Yeong Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.733-737
    • /
    • 2012
  • The objectives of this study were to investigate soil chemical properties for forest rehabilitation and suggest design and management in abandoned coal mine areas in Mungyeong, Gyeongsangbuk-do. Total study sites were 10 sites, and soil analysis particular were soil pH, TOC, total-N, C/N ratio, A.v. $P_2O_5$, and CEC. Because most of study sites showed soil pH from 5.0 to 7.0, it seems that soil pH does not affect growth of vegetation. But soil pH in Danbong1 was acidic (pH 4.6), so it is needed to improve with ameliorant such as limestone. Most of study sites is necessary to manage for organic matter and Nitrogen, because there sites showed lower value of TOC and total-N than general forest. The values of A.v. $P_2O_5$ and CEC were good in most of study sites, so it seems that they do not have effect on vegetation growth. All of soil factors has no regression according to elapsed time after rehabilitation. TOC, total-N and A.v. $P_2O_5$ among soil properties have positive relationship between each other. It is necessary to fertilizer for organic matter and Nitroge because of value in TOC, total-N and C/N ratio. The results of this study were analyzed only one time. So, long-term monitoring for soil properties is important for the correct forest rehabilitation and management.

The mechanical properties of rock salt under cyclic loading-unloading experiments

  • Chen, Jie;Du, Chao;Jiang, Deyi;Fan, Jinyang;He, Yi
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.325-334
    • /
    • 2016
  • Rock salt is a near-perfect material for gas storage repositories due to its excellent ductility and low permeability. Gas storage in rock salt layers during gas injection and gas production causes the stress redistribution surrounding the cavity. The triaxial cyclic loading and unloading tests for rock salt were performed in this paper. The elastic-plastic deformation behaviour of rock salt under cyclic loading was observed. Rock salt experienced strain hardening during the initial loading, and the irreversible deformation was large under low stress station, meanwhile the residual stress became larger along with the increase of deviatoric stress. Confining pressure had a significant effect on the unloading modulus for the variation of mechanical parameters. Based on the theory of elastic-plastic damage mechanics, the evolution of damage during cyclic loading and unloading under various confining pressure was described.

Alkali and Metal Element concentrations in Soil and Plant from Daesung Coal Mine in Keumsan, Chungnam (충남 금산 폐탄광지역의 토양 및 식물체내 알칼리 및 금속원소의 함량)

  • 김명희;송석환;민일식;장인수
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_1
    • /
    • pp.457.1-463
    • /
    • 1998
  • the research has been made for alkali and metal element concentrations in top soils and plants from the abandoned coal mine, Keumsan, Chungnam Province. Samples of the top soil and plant (Miscanthus sinensis and Pinus rigida) were collected from the mine area in which was divided into t재 regions the polluted region influenced by the coal mining and the non-polluted region. pH of the top soils was 3.16-4.33 in the polluted region. Ca, Sr and P concentrations were high in the polluted soils, and Al and Ba concentrations were high in the non-polluted soils. No differences were found in K, Na and Ti concentrations. M. sinensis was higher in the element concentrations than P. rigida. In the average concentration of the alkali and metal element, M. sinensis showed high Cs and Na in the polluted region, and high Ba, Ca, K, Sr and concentrations in the non-polluted region. P. rigida had high Cs, Na and Rb concentrations in the polluted region. M. sinensis and P. rigida were higher in the root than above-ground part in the most element, but Ca and K. Ca, K and Na concentrations within both plants had higher than those of soils.

  • PDF