• 제목/요약/키워드: Coal gasifier

검색결과 138건 처리시간 0.029초

20톤/일급 가스화공정 Test Bed 설계 (Design of a 20 Tons/Day Gasification Test Bed)

  • 정재화;서석빈;서혜경;지준화
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.112.1-112.1
    • /
    • 2010
  • To develop domestic IGCC gasification technology, a gasification test bed with a capacity of 20 tons/day has been designed. The main components of the test bed designed are a coal pulverizing and feeding facility, a gasifier, a syngas cooler, a gas treatment unit, oxygen and nitrogen tanks, and flare stack. For wide applications to the development of advanced coal gasification technology, many special functions have been given to it such as syngas recirculation, char recirculation, and multiple stage gasification. The test bed will be used for testing the characteristics of various types of coals, deriving optimum conditions for efficient gasifier operation and trouble shooting for the Korea IGCC demonstration plant. It will also be applied as a useful tool to develop scale-up design technology of IGCC and proceed to commercialization.

  • PDF

300MW급 Shell형 1단 분류층 가스화기 성능에 대한 전산수치해석 : 석탄·바이오매스 혼합비에 따른 CO2 가스화 반응 (Numerical Study on 300 MW Shell-Type One-Stage Entrained Flow Bed Gasifier : Effect of Coal·Biomass Blending Ratio on CO2 Gasification)

  • 홍정우;박상신;송지훈;황정호
    • 한국수소및신에너지학회논문집
    • /
    • 제23권3호
    • /
    • pp.274-284
    • /
    • 2012
  • Recently, gasification technology for coal blended with biomass has been an issue. Especially, An advantages of coal blended with biomass are 1) obtaining high cold gas efficiency, 2) obtaining syn-gas of high-high heating value (HHV), and 3) controlling occurrence of $CO_2$. In this study, the efficiency and characteristic of 300 MW Shell type gasifier were predicted using CFD simulation. The CFD simulation was performed for biomass coal blending ratios of 0~0.2, 0.5, 1 and $O_2$/fuel ratios of 0.5~0.84. Kinetic parameters (A, $E_a$) obtained by $CO_2$ gasification experiment were used as inputs for the simulation. In results of CFD simulation, residence times of particle in 300MW Shell type gasifer presented as 7.39 sec ~ 13.65 sec. Temperature of exit increased with $O_2$/fuel ratio as 1400 K ~ 2800 K, while there is not an effects of biomass coal blending ratios. Considering both aspects of temperature for causing wall slagging and high cold gas efficiency, the optimal $O_2$/fuel ratio and blending ratio were found to be 0.585 and 0.05, respectively.

Numerical Simulation of the Flow Field inside a New 1 Ton/Day Entrained-Flow Gasifier in KIER

  • Li, Xiang-Yang;Choi, Young-Chan;Park, Tae-Jun
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2000년도 춘계 학술발표회 논문집
    • /
    • pp.43-50
    • /
    • 2000
  • The flow field of a 1 Ton/Day entrained-flow gasifier constructed in KIER was numerical simulate in this paper. The standard $k-{\varepsilon}$ turbulence model and simple procedure was used with the Primitive-Variable methods during computation. In order to find the influence factors of the flow field which may have great effects on coal gasification process inside gasifier, difference geometry parameters at various operating conditions were studied by simulation methods. The calculation results show that the basic shape of the flow field is still parabolic even the oxygen gas is injected from the off-axis position. There exist an obvious external recirculation zone with a length less than 1.0m and a small internal recirculation region nears the inlet part. The flow field inside the new gasifier is nearly similar as that of the old 0.5T/D gasifier at same position if the design of burner remains unchanged.

  • PDF

개방형 수식모델링 툴을 이용한 IGCC 플랜트 공정모사 (Process Modeling of IGCC Power Plant using Open-Equation Modeling Framework)

  • 김시문;주용진;김미영;이중원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.113.1-113.1
    • /
    • 2010
  • IGCC(Integrated Coal Gasification and Combined Cycle) plants can be among the most advanced and environmental systems for electric energy generation from various feed stocks and is becoming more and more popular in new power generation fields. In this work, the performance of IGCC plants employing Shell gasification technology and a GE 7FB gas turbine engine was simulated using IPSEpro open-equation modeling environment for different operating conditions. Performance analyses and comparisons of all operating cases were performed based on the design cases. Discussions were focused on gas composition, syngas production rate and overall performance. The validation of key steady-state performance values calculated from the process models were compared with values from the provided heat and material balances for Shell coal gasification technology. The key values included in the validation included the inlet coal flow rate; the mass flow rate, heating value, and composition of major gas species (CO, H2, CH4, H2O, CO2, H2S, N2, Ar) for the syngas exiting the gasifier island; and the HP and MP steam flows exiting the gasifier island.

  • PDF

고압 석탄 가스화기용 액상 이산화탄소의 점성측정 방법비교에 관한 연구 (Comparison of Viscosity Measurement of a Liquid Carbon Dioxide Used for a High-Pressure Coal Gasifier)

  • 김강욱;김창연;김학덕;송주헌
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.581-589
    • /
    • 2015
  • In this study, the viscosity of a liquid carbon dioxide ($LCO_2$) that can potentially be used in a wet feed coal gasifier was evaluated. A pressurized capillary viscometer was employed to obtain the viscosity data of $LCO_2$ using two different methods. During the first method, the measurements were conducted under quasi-steady and high pressure flow conditions where two-phase flow was greatly minimized. The viscosity of $LCO_2$ was determined using turbulent friction relationship. At the second flow condition where unsteady flow is induced, the viscosity of $LCO_2$ was measured using the half-time pressure decay data and was further compared with values calculated by the first method.

선회분류층형 석탄가스화기내의 비반응 난류 선회유동장 해석 (Numerical Analysis of Turbulent Swirling Cold-Flow in a Cyclonic Coal Gasifier)

  • 이진욱;나혜령;윤용승
    • 에너지공학
    • /
    • 제6권2호
    • /
    • pp.137-144
    • /
    • 1997
  • 선회분류층형 석탄가스화기내의 비반응 난류선회 유동장을 수치해석 기법을 이용하여 해석하였다. 우선 2차원해석과 3차원 해석과의 비교를 통하여 2차원화 가정의 주요변수인 등가틈새(equivalent slit)의 개념이 적절하며, 동시에 2차원 해석결과의 타당성을 입증하였다. 선회분류층형 가스화기내에서 가장 중요한 무차원수인 선회수의 변화에 따른 유동장의 특성변화를 주로 고찰하였다. 또한 유동장의 이론적인 선회수 및 등가틈새너비를 입력으로 이용한 전산해석을 수행하여. 미분탄반응이 존재할 경우의 유동장의 특성을 예측하여 보았다. 버너출구단면적의 크기 및 위치를 적절히 조절함으로써, 가스화기 내부에 미분탄반응에 적절한 유동장을 형성시킬 수 있음을 발견하였다.

  • PDF

2단 분류층 석탄가스화기 내의 열유동 및 미분탄/재 입자거동 계산 (Numerical Calculations on Flow and Behavior of Pulverized Coal and Ash Particles in 2-Stage Entrained-Flow Gasifier)

  • 황정호;박선호;정진도
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.895-904
    • /
    • 2001
  • Flow fields, temperature distributions, and particle trajectories in a 2-stage entrained-flow gasifier are calculated using a CFD code, FLUENT. Realizable k-$\xi$ model is used as a turbulent model. Because of swirling flow there appear recirculation regions near the burners. The characteristics of flow fields and temperature distributions in the gasifier are dependent on the swirl number of the system. Mean residence time of the particles in the reductor is inversely proportional to particle size, particle density and swirl number. As the swirl number is increasing, the particles injected from the combustor burners approach the wall near the combustor burners, which prevents the particles from entering the reductor and thus attatching the reductor wall. If the lower combustor burner angle is larger than the higher combustor burner angle for a given swirl number, the particles may move toward the reductor and cause ash/slag deposition problem.

상용모사기를 이용한 로토석탄의 분할유동층 가스화기 가스화 특성 모사 (The Computer-Aided Simulation Study on the Gasification Characteristics of the Roto Coal in the Partitioned Fluidized-Bed Gasifier)

  • 박영철;문종호;이승용;이동호;진경태
    • Korean Chemical Engineering Research
    • /
    • 제50권3호
    • /
    • pp.511-515
    • /
    • 2012
  • 본 연구에서는 상용모사기를 이용하여 분할유동층 가스화기에서 로토석탄의 가스화 특성 모사를 수행하였다. 분할 유동층 가스화기는 가스화영역에서 일어나는 연소반응과 가스화반응(발열반응과 흡열반응)을 각각 다른 영역에서 일어날 수 있도록 반응기 내부를 분할한 가스화기이다. 분할유동층 가스화기의 주요 개념은 가스화에 요구되는 열을 연소영역에서 생성된 열을 이용하여 공급하는 것으로 가스화기 내부에서의 부분 연소를 억제하고, 격벽을 통한 열전달과 열매체의 이동을 통해 공급하는 것이다. 분할유동층 가스화기 모델은 열분해, 촤 가스화, 타르/오일 가스화, 촤 연소반응으로 4개의 영역을 가지도록 구현하였다. 열분해의 경우, 대상 석탄을 반응온도, 반응가스, 석탄주입량을 변화시켜 실험을 수행하여 실험데이터로부터 correlation 모델을 작성하였다. 가스화는 Gibbs free energy를 최소화하는 모델을 이용하고 촤 연소영역은 combustion 모델을 이용하였다. 분할유동층 가스화기 모사결과를 비교하기 위해 우선 단일영역 가스화기 모사를 수행하였다. 단일영역 가스화기의 경우 석탄열분해 반응기와 석탄가스화 반응기 두 개로 구성되며 반응모델은 분할유동층 가스화기와 일치한다. 분할유동층 가스화기 모사 결과, 냉가스효율은 84.4%로 단일영역 가스화기와 유사한 결과를 얻었으며 합성가스의 조성은 $H_2$$CH_4$이 다소 증가하고 CO와 $CO_2$가 다소 감소한 것을 확인하였다. 모델 검증을 위해 10건의 단일영역 가스화 실험에 대하여 모사를 수행하였다. 모사를 통해 얻어진 합성가스의 조성은 CO, $CO_2$, $CH_4$의 경우 실험결과와 모사결과가 거의 일치하는 반면 $H_2$의 경우 모사결과가 실험값과 비교하여 다소 높은 값을 갖는 것을 확인하였으나 경향은 실험값과 유사함을 확인하였다. 탄소전환율의 경우, 모델결과가 실험값과 비교하여 높은 전환율을 보이는 것을 알 수 있으며 이는 모사에 사용된 가스화 모델이 평형반응기로 반응기에서의 체류시간과 접촉시간이 실제 실험과 차이가 있기 때문으로 파악된다.