• Title/Summary/Keyword: Coal gasification

Search Result 297, Processing Time 0.041 seconds

석탄가스화를 이용한 수소생산 기술현황 및 프로젝트 분석 (A Study on Technology Status and Project of Hydrogen Production from Coal Gasificiation)

  • 고승모;장호창
    • 한국가스학회지
    • /
    • 제27권1호
    • /
    • pp.1-12
    • /
    • 2023
  • 석탄가스화는 석탄을 불완전 연소하여 수소와 일산화탄소로 이루어진 합성가스를 생성하는 공정이다. 기 존 석탄 연소와 달리 질소 산화물이나 황 산화물이 배출되지 않고 미세먼지 발생량이 적어 석탄을 청정하게 이용할 수 있으며 합성가스를 통해 부가적인 화학물질을 생산할 수 있다. 석탄가스화는 합성가스 생산방식에 따라 석탄가스화복합화력발전(Integrated Gasification Combined Cycle, IGCC), 플라즈마 석탄가스화, 지하석탄 가스화(Underground Coal Gasification, UCG)로 분류된다. 최근에는 합성가스의 수소를 활용하기 위하여 일산화탄소를 수소로 전환하는 수성가스전환(Water Gas Shift, WGS) 반응기와 이산화탄소를 포집하는 설비를 결합하는 사례가 늘고 있다. 본 연구에서는 석탄가스화와 합성가스를 이용한 수소 생산 방법에 대하여 정리하였으며 현재 진행되고 있는 석탄가스화를 이용한 수소 생산 프로젝트를 조사하였다.

Pilot 규모 석탄 가스화기에서의 탄종별 가스화성능 특성 (Effects of Different Coal Type on Gasification Characteristics)

  • 박세익;이중원;서혜경
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.470-477
    • /
    • 2010
  • The IGCC (Integrated gasification combined cycle) is known for one of the highest efficiency and the lowest emitting coal fueled power generating technologies. As the core technology of this system is the gasifier to make the efficiency and the continuous operation time increase, the research about different coal's gasification has been conducted. Our research group had set-up the coal gasifier for the pilot test to study the effect of different coals-Shenhua and Adaro coal- on gasification characteristics. Gasification conditions like temperature and pressure were controlled at a fixed condition and coal feed rate was also controlled 30 kg/h to retain the constant experimental condition. Through this study we found effects of coal composition and $O_2$/coal ratio on the cold gas efficiency, carbon conversion rate. The compounds of coal like carbon and ash make the performance of gasifier change. And carbon conversion rate was decreased with reduced $O_2$/coal ratio. The optical $O_2$/coal ratio is 0.8 for the highest cold gas efficiency approximately. At those operating conditions, the higher coal has the C/H ratio, the lower syn-gas has the $H_2$/CO ratio.

주요 운전 변수에 따른 석탄의 가스화 성능 예측 (Coal Gasification Performance with Key Operating Variables)

  • 이승종;정석우;윤용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.437-440
    • /
    • 2007
  • Gasification converts coal and other feedstocks into a very clean and usable gas, called syngas, that can be used to produce a wide variety products such as electricity, chemicals, transports fuels, hydrogen production, etc. This paper was studied the gasification performance effects with the variation of the gasification operating parameters such as the feeding amounts of oxygen, steam and coal. When $O_2/coal$ ratio was below 0.8, $H_2$ mole % was increased as increasing $O_2/coal$ ratio. CO mole % was increased when $O_2/coal$ ratio was below 1.2 as increasing the $O_2/coal$ ratio. As increasing steam/coal ratio, $H_2$ mole %was increased and CO mole % was decreased. The $O_2/coal$ and steam/coal ratio was $0.8{\sim}0.9$ and $0.0{\sim}0.4$, respectively, to keep the proper gasification condition that the gasifier temperature was $1300^{\circ}C{\sim}1450^{\circ}C$ and the cold gas efficiency was over 76%.

  • PDF

1톤/일 분류층가스화기에서 석탄과 석유코크스 혼합 슬러리의 가스화특성 (Gasification of Coal-Petroleum Coke-Water Slurry in a 1 ton/d Entrained Flow Gasifier)

  • 윤상준;최영찬;홍재창;라호원;이재구
    • Korean Chemical Engineering Research
    • /
    • 제46권3호
    • /
    • pp.561-566
    • /
    • 2008
  • 석유코크스의 연료적 가치에 대한 관심이 증가하여, 세계적으로 정유공정이나 발전용으로 석유코크스 가스화 플랜트 적용 사례가 증가하고 있다. 본 연구에서는 1톤/일 규모의 석탄가스화 시스템을 활용하여 석유코크스 가스화를 위한 요소기술을 개발하고자 하였다. 석유코크스는 반응성이 낮아 가스화를 위한 산소소모량이 석탄보다 많이 소요되었으며, 석유코크스와 석탄을 각각 50%로 혼합한 연료의 경우, 합성가스 발열량은 $6.7{\sim}7.2MJ/Nm^3$ 수준을 보였다. 가스화 성능 면에서 전환율은 산소량 증가에 따라 92%이상까지 도달할 수 있었지만, 냉가스효율은 석탄보다 낮은 수준의 결과를 보였다. 이는 반응성이 낮은 석유코크스의 경우 가스화 성능 향상을 위해 버너 노즐부위에 대한 미립화 설계 보완이 필요한 것으로 파악되었다.

분류층 가스화 장치를 이용한 석탄 가스화 특성 연구 (Gasification characteristics of coal in an entrained-flow gasifier)

  • 라호원;서명원;윤상준;윤성민;가명훈;이해룡;이재구
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.265-266
    • /
    • 2014
  • Due to global economic growth, there is an increasing need for energy. Fossil fuels will continue to dominate the world energy supplies in the 21st century and coal will play a significant role. Since coal is one of the most important fossil fuels in the world, coal gasification technology appears to be an inevitable choice for power and chemicals production and has a leading place in Clean Coal Technology (CCT). The most eminent environmental advantage of coal gasification lies in its inherent reaction features that produce negligible sulfur and nitrogen oxides, as well as other pollutants in a reducing atmosphere. The gasifier was operated for a throughput of 1.0 ton & 10.0ton coal per day at pressures of 1~20Bar. Gasification was conducted in a temperature range of $1,100{\sim}1,450^{\circ}C$.

  • PDF

범용 CFD 코드에서 석탄 가스화 및 연소 모델링에 관한 이해 (Understanding Coal Gasification and Combustion Modeling in General Purpose CFD Code)

  • 이후경;최상민;김봉근
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.15-24
    • /
    • 2010
  • The purpose of this study is to assess approaches to modeling coal gasification and combustion in general purpose CFD codes. Coal gasification and combustion involve complex multiphase flows and chemical reactions with strong influences of turbulence and radiation. CFD codes would treat coal particles as a discrete phase and gas species are considered as a continuous phase. An approach to modeling coal reaction in $FLUENT^{(R)}$, selected in this study as a typical commercial CFD code, was evaluated including its devolatilization, gas phase reactions, and char oxidation, turbulence, and radiation submodels. CFD studies in the literature were reviewed to show the uncertainties and limitations of the results. Therefore, the CFD analysis gives useful information, but the results should be carefully interpreted based on understandings on the uncertainties associated with the modelings of coal gasification and combustion.

석탄가스화 연료의 정적 예혼합 연소특성 (Premixed Combustion Characteristics of Coal Gasification Fuel in Constant Volume Combustion Chamber)

  • 김태권;장준영
    • 한국환경과학회지
    • /
    • 제15권6호
    • /
    • pp.601-606
    • /
    • 2006
  • The coal gasification fuel is important to replace petroleum fuel. Also they have many benefits for reducing the air pollution. Measurements on the combustion characteristics of synthetic gas from coal gasification have been conducted as compared with LPG in constant volume combustion chamber. The fuel is low caloric synthetic gas containing carbon monoxide 30%, hydrogen 20%, carbon dioxide 5%, and nitrogen 45%. To elucidate the combustion characteristics of the coal gasification fuel, the combustion pressures, combustion durations, and pollutants(NOx, $CO_2$, CO) are measured with equivalence ratios($\phi$), and initial pressures of fuel-air mixture in constant volume chamber. In the case of the coal gasification fuel, maximum combustion pressure and NOx concentration are lower rather than LPG fuel. However CO and $CO_2$ emission concentration are similar to that of LPG fuel.

분류층 건식 석탄가스화기에서의 가스화 특성 (Gasification characteristics in an entrained flow coal gasifier)

  • 유영돈;윤용승;안달홍;박호영
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1690-1700
    • /
    • 1997
  • Entrained coal gasification tests with Datong coal were performed to assess the influence of oxygen/coal ration and pressure. When gasification condition in oxygen/coal ratio has changed from 0.5 to 1.0, optimal gasification condition from low pressure runs was oxygen/coal ratio of approximately 0.9 where CO was produced about 40% and H, about 20%. Under the pressure condition of 12-14 atmospheres, optimal oxygen/coal ratio value was in the region of 0.6 where CO was produced about 55% and H2about 25%. From these results, it was found that the oxygen/ coal ratio for the maximum production of CO and H, was decreasing with the increase in gasifier pressure and also, with increasing oxygen content, carbon conversion was increased. For the Chinese Datong coal, cold gas efficiency was in the range of 40-80%.

가스분석을 이용한 석탄 종류별 $CO_2$ 가스화 반응특성 연구 (Characteristics of Various Ranks of Coal Gasification with $CO_2$ by Gas Analysis)

  • 김용택;서동균;황정호
    • 한국연소학회지
    • /
    • 제15권2호
    • /
    • pp.41-49
    • /
    • 2010
  • Various coals from many countries around the world have been used for pulverized coal boiler in power plants in Korea. In this study, the gasification reactivities of various coal chars with $CO_2$ were investigated. Carbon conversion was measured using a real time gas analyzer with NDIR CO/$CO_2$ sensor. In a lab scale furnace, each coal sample was devolatilized at $950^{\circ}C$ in nitrogen atmosphere and became coal char and then further heated up to reach to a desired temperature. Each char was then gasified with $CO_2$ under isothermal conditions. The reactivities of coal chars were investigated at different temperatures. The shrinking core model (SCM) and volume reaction model(VRM) were used to interpret the experiment data. It was found that the SCM and VRM could describe well the experimental results within the carbon conversion of 0-0.98. The gasification rates for various coals were very different. The gasification rate for any coal increased as the volatile matter content increased.

Numerical and experimental study for Datong coal gasification in entrained flow coal gasifier

  • Park, Y. C.;Park, T. J.;Kim, J. H.;Lee, J. G.
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2001년도 추계 학술발표회 논문집
    • /
    • pp.69-76
    • /
    • 2001
  • The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. By divding the complicated coal gasification process into several simplified stages suh as slurry evaporation, coal devolitilisation and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The k-$\varepsilon$turbulence model was used for the gas phase flow while the Random-trajectory model was applied to describe the behavior of the coal slurry particles. The unreacted-core shrinking model and modified Eddy Break-Up(EBU) model were used to simulate the heterogeneous and homogeneous reactions, respectively. The simulation results obtained the detailed informations about the flow field, temperature inside the gasifier. Meanwhile, the simulation results were compared with the experimental data as function of $O_2$/coal ratio. It illustrated that the calculated carbon conversions agreed with the measured ones and that the measurd quality of the atngas was better than the calculated one when the $O_2$/coal ratio increases. The result was related with the total heat loss through the gasifier and uncertain kinetics for the heterogeneous reactions.

  • PDF