• Title/Summary/Keyword: Coal bed

Search Result 226, Processing Time 0.031 seconds

Properties of Cement Mortar According to Mixing of Circulating Fluidized Bed Fly Ash and Pulverized Coal Fly Ash based on Blast Furnace Slag (고로슬래그 기반 순환유동층 플라이애시 및 미분탄 플라이애시 혼입에 따른 시멘트 모르타르의 특성)

  • Cho, Seong-Woo;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.141-148
    • /
    • 2021
  • In this study, the characteristics of the cement mortar replaced with fly ash and ground granulated blast furnace slag generated during circulating fluidized bed combustion method and pulverized coal combustion process were investigated. As a result of the study, when mixed with circulating fluidized bed combustor fly ash and pulverized coal combustion fly ash, it is advantageous not only in terms of strength development but also in terms of durability. The circulating fluidized bed combustor fly ash contributes to the improvement of initial reactivity, and the pulverized coal combustion fly ash is involved in long-term strength development through pozzolanic reaction. Therefore, it can be seen that the mixed use of circulating fluidized bed combustor fly ash and pulverized coal combustion fly ash acts as a complementary factor for cement mortar substituted with ground granulated blast furnace slag.

Economic Feasibility of Circulating Fluidized Bed Combustion Boiler Power Plant for Low Grade Coal (저급탄용 순환유동층 보일러 발전설비의 경제성 평가)

  • Hong, Min-Pyo;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.8 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • The structure and combustion characteristics, and the economic feasibility of the circulating fluidized bed combustion(CFBC) boiler using low grade coal were introduced. The economic feasibility is evaluated by comparing a 500 MW CFBC boiler power plant using low grade coal and a pulverized combustion boiler power plant with high grade coal. As the result of the evaluation, the pulverized coal combustion boiler power plant has an internal rate of return of 12.95%, 1,395.9 billion Korean won of net present value, and 6.26 years of payback period. On the other hand, CFBC boiler power plant has an internal rate of return of 13.54%, 1,704.3 billion Korean won of net present value, and 6.02 years payback period. Therefore, the CFBC boiler power plant has better feasibility in all aspects, as 0.59% higher of internal rate of return, 308.4 billion Korean won of higher net present value and 0.24 year of shorter payback period.

  • PDF

Electrostatic Precipitation Characteristics of Coal Combustion Boiler (석탄연소 보일러용 분진의 전기집진특성)

  • Lee, Tae-Sik;Bun, Cha-Seok;Kim, Gyeong-Seok;Nam, Chang-U;Lee, Gyu-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.475-482
    • /
    • 1999
  • The electrostatic precipitation characteristics of two kinds of fly ashes, one derived from a fluidized bed combustor(FBC), the other from a pulverized coal(PC) fired furnace, have been studied on a pilot plant. Experiments have been carried out to enhance the collection efficiency while changing the operating conditions for two kinds of coal ashes, respectively. It has been shown that collection efficiency is affected by many factors such as shape of the ashes, dust contents, humidity, and temperature, etc. Experimantal results showed that collection efficiency of the FBC ashes was higher than that of the PC fly ash in spite of the small size of the FBC ashes. The experimetal results have been applied to the collection efficiency equations to show that the modified Deutsch equation was well agreed with experiment results if modification parameter k was set to 0.6 for the fluidized bed fly ashes and to 0.43 for the pulverized coal fly ashes.

  • PDF

Creating Eelgrass Beds Using Granulated Coal Ash (석탄회 조립물을 이용한 잘피군락 조성에 관한 연구)

  • Kim, Kyunghoi;Hyeon, Yejin;Hibino, Tadashi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.814-820
    • /
    • 2016
  • In order to utilize coal ash for eelgrass beds, a pilot plant experiment was carried out. Eelgrass was transplanted to on artificial bed made of granulated coal ash. Successful settlement of eelgrass was achieved and the density of the eelgrass increased at an exponential rate through vagetative propagation after 24 months. An increase in biodiversity in and around the artificial eelgrass bed was observed after the transplant took place. From the results of this experiment, it can be concluded that granulated coal ash is a suitable material for creating eelgrass beds.

Chemical Looping Combustion Characteristics of Coal and Char in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 석탄과 촤의 매체순환연소 특성)

  • Ryu, Ho-Jung;Hyun, Ju-Soo;Kim, Young-Joo;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.884-894
    • /
    • 2011
  • Effects of temperature, volatile content, particle diameter and solid input weight were investigated in the batch fluidized bed reactor using OCN703-1100 particle as oxygen carrier and Roto coal and char as fuels. Two solid fuels represented the best reactivity at different temperature, $900^{\circ}C$ for Roto coal and $950^{\circ}C$ for char, respectively. However, we selected $900^{\circ}C$ as the best operating temperature because the improvement of reactivity of char at $950^{\circ}C$ was negligible. Char represented better reactivity than Roto coal because char contains low volatile than Roto coal. For both solid fuels, reactivities were improved with increasing of the particle diameter. These results were explained by solid mixing tests in a transparent fluidized bed using two char particles having different particle size ranges and OCN703-1100 particle. The bigger particle showed better solid mixing with OCN703-1100 particle, and therefore, represented better reactivity. For both solid fuels, reactivities were improved with increasing of the solid input weight within the experimental conditions of this study because the weight of coarse particles increased with the solid input weight increased, and therefore, these coarse particles can mix well with the oxygen carrier.

Design of a 20 Tons/Day Gasification Test Bed (20톤/일급 가스화공정 Test Bed 설계)

  • Chung, Jaehwa;Seo, Seokbin;Seo, Haikyung;Chi, Junhwa
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.112.1-112.1
    • /
    • 2010
  • To develop domestic IGCC gasification technology, a gasification test bed with a capacity of 20 tons/day has been designed. The main components of the test bed designed are a coal pulverizing and feeding facility, a gasifier, a syngas cooler, a gas treatment unit, oxygen and nitrogen tanks, and flare stack. For wide applications to the development of advanced coal gasification technology, many special functions have been given to it such as syngas recirculation, char recirculation, and multiple stage gasification. The test bed will be used for testing the characteristics of various types of coals, deriving optimum conditions for efficient gasifier operation and trouble shooting for the Korea IGCC demonstration plant. It will also be applied as a useful tool to develop scale-up design technology of IGCC and proceed to commercialization.

  • PDF

A Study on the Combustion Characteristics of Coke and Anthracite in an Iron Ore Sintering Bed (소결층 내에서의 코크스와 무연탄의 연소 특성 비교 연구)

  • Yang, Won;Yang, Kwang-Heok;Choi, Eung-Soo;Ri, Deog-Won;Kim, Sung-Man;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.30-37
    • /
    • 2004
  • Coal combustion in an iron ore sintering bed is a key parameter that determines quality of the sintered ores and productivity of the process. In this study, effects of the different types of coal - coke and anthracite - on the combustion in the iron ore sintering bed are investigated by modeling and experiment. Fuel characteristics of coke and anthracite are observed through a set of basic analysis and thermo-gravimetric analysis. Coke has a higher reactivity than anthracite due to the difference of surface area and density, and these characteristics are reflected in the 1-D unsteady simulation of the iron ore sintering bed. Calculation results show that different reactivity of the fuel can affect the bed combustion.

  • PDF

Introduction and Current Status of Ultra Supercritical Circulating Fluidized Bed Boiler (초초임계 순환유동층 보일러 기술 소개 및 현황)

  • Lee, Si-Hun;Lee, Jong-Min
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.211-221
    • /
    • 2016
  • The increase of world's population and economic development are the keys drivers behind growing demand for energy. Especially the demand for electricity would eventually result in an increase of coal usage. Therefore ultra supercritical circulating fluidized bed boiler has been developed as solutions of economic eco-friendly technologies for coal and of increasing supplies of low grade fuels. Ultra supercritical circulating fluidized bed boiler has an once through type of steam cycle different from drum type in subcritical circulating fluidized bed boiler. Also, the duplication of a proven commercial module with 100-300 MWe subcritical circulating fluidized bed might be the key for design of 500~800 MWe ultra supercritical circulating fluidized bed boiler. After 2017, ultra supercritical circulating fluidized bed boiler might become standard model over subcritical circulating fluidized bed boiler. Therefore, this paper will help you to understand ultra super critical circulating fluidized bed (USC-CFB) through describing the background, status and prospect of the CFB technology.

Stable isotope and water quality analysis of coal bed methane produced water in the southern Qinshui Basin, China

  • Pan, Jienan;Zhang, Xiaomin;Ju, Yiwen;Zhao, Yanqing;Bai, Heling
    • Membrane and Water Treatment
    • /
    • v.4 no.4
    • /
    • pp.265-275
    • /
    • 2013
  • China is one of the countries with the highest reserves of coal bed methane (CBM) in the world. Likewise, the CBM industry is significantly growing in China. However, activities related to CBM development have led to more environmental problems, which include serious environmental damage and pollution caused by CBM-produced water. In this paper, the detailed characteristics of CBM-produced water in the southern Qinshui Basin were investigated and analyzed and compared with local surface water and coal mine drainage. Most of CBM-produced water samples are contaminated by higher concentration of total dissolved solids (TDS), K (Potassium), Na (Sodium) and $NH_4$. The alkalinity of the water from coalmines and CBM production was higher than that of the local surface water. The concentrations of some trace elements such as P (Phosphorus), Ti (Titanium), V (Vanadium), Cr (Chromium), Ni (Nickel), Zn (Zinc), Ge (Germanium), As (Arsenic), Rb (Rubidium), and Pd (Palladium) in water from the coalmines and CBM production are higher than the acceptable standard limits. The ${\delta}D$ and ${\delta}^{18}O$ values of the CBM-produced water are lower than those of the surface water. Similarly, the ${\delta}D$ values of the CBM-produced water decreased with increasing drainage time.

Modified Mathermatical Model of S. ENDRENYI and B. PALANCZ for Fluidized Bed Coal Combustion - Effect on the Variation of Specific Surface - (석탄(石炭)의 유동층(流動層) 연소(燃燒)에 관(關)한 S. ENDRENYI와 B. PALANCZ의 수학적(數學的) 수정(修正)모델(비표면적(比表面積) 변화(變化)의 영향(影響)))

  • Kim, M.J.;Rhee, K.S.;Seo, J.Y.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.1
    • /
    • pp.74-82
    • /
    • 1988
  • A numerical analysis of the mathematical model for fluidized bed coal combustion has been performed. Based on the physical nature of the specific surface variation due to the decreasing of coal particle diameter according to the combustion process, the modified model which has been added the specific surface variation to the S.ENDRENYI and B.PALANCZ's mathematical model was established in this study. From the numerical analysis of these two models, it was found that the perfect combustion time is increasing largely at least 5 seconds in the modified model in comparison with that of the S.ENDRENYI and B.PALANCZ's model, and the bed temperature and the coal particle surface temperature during the main combustion period represent constant with time in the S.ENDRENYI and B.PALANCZ's model, on the other hand, these properties are decreasing linearly with time in the modified model.

  • PDF