• Title/Summary/Keyword: Coal band

Search Result 11, Processing Time 0.025 seconds

Relationship of fractures in coal with lithotype and thickness of coal lithotype

  • Pan, Jienan;Wang, Haichao;Wang, Kai;Niu, Qinghe
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.613-624
    • /
    • 2014
  • The fractures in coal are the main migration and output channels of coalbed methane, directly influencing the permeability of the coal seams. It is of great significance to study the effect of fracture distribution in coals on the permeability of coal seam. The development rules of endogenetic and exogenetic fractures are different among various coal lithotypes. There is also difference in the fracture density for the same lithotype with different thicknesses. Through the observation and description of the macroscopic fractures in coal and the origin of fractures in coal, the effect of the coal lithotype and its thickness on fracture development in coal was discussed. It was found through the study that the density of fractures in vitrain band was the maximum for the same coal rank and thickness, followed by clarain band. There were few fractures developed in the durain band. However, the changes of fracture density in three types of bands presented different declining trends for low, medium and high coal rank. There were no fractures developed in the fusain. There were three variation patterns for the fracture densities at the same coal rank and coal lithotype: linear decrease, nonlinear decrease, and first decrease then remaining unchanged. However, the overall trend was that the fracture density decreased with the increase of thickness of coal band for the same coal rank and coal lithotype.

A Study on the Ceramic Body and Art Glaze by Using Coal Ash (도예용 소지 및 유에 석탄재 적용 연구)

  • Ri, Se-W;Park, Sung;Chung, Yun-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.548-553
    • /
    • 2009
  • This study is on the application of ceramic body and art glaze by using coal ash according to each wt%. Body color was turned red and dark as increasing coal ash contents in the body and art glaze because of the effect of noncombustible carbon in $Fe_2O_3$ and coal ash. Not only pore and black core were generated but also absorptance and shrinkage were increased as increasing coal ash contents. The glaze of coal ash 20 wt% showed blue absorption band, turned red band as increasing coal ash contents, $Al_2O_3\;to\;SiO_2$ ratio got lower and became mat because glaze is estranged from $Al_2O_3\;to\;SiO_2$ mol ratio 1:10 of transparent glaze as increasing coal ash contents. Glaze showed unstable dissolving condition in the more coal ash contents.

Combustion characteristics of two imported Indonesia coals as a pulverized fuel of thermal power plants (인도네시아산 발전용 수입 석탄 2종의 연소특성 비교 평가)

  • Lee, Hyun-Dong;Kim, Jae-Kwan
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.136-142
    • /
    • 2010
  • Combustion reactivity and thermal behavior of two imported coals used as a pulverized fuel of commercially thermal power plant were investigated by thermogravimetric analysis (TGA) and large scale test furnace of 200 kg/hr. TGA results showed that combustion efficiency of high moisture coal has lower than reference coal due to the slow combustion completion rate although it has the low ignition temperature, and activation energies of high moisture coal with 79 kJ/mol for overall combustion was higher than reference coal of 53 kJ/mol. Test furnace results ascertained that flame of black band of high moisture coal during the combustion in boiler broke out compared to reference coal and then it becomes to unburned carbon due to the less reactivity and combustion rate. But, Blending combustion of high moisture coal with design coal of high sulfur are available because sulfur content of high moisture coal was too low to generate the low SOx content in flue gas from boiler during the combustion. The ash analysis results show that it was not expected to be associated with slagging and fouling in pulverized coal fired systems due to the low alkali metal content of $Na_2O$ and $K_2O$ compared to bituminous coal.

Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications

  • Shi, Ya Wei;Xiong, Ling;Chen, Meng Gang
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • A miniaturized triple-band antenna suitable for wireless USB dongle applications is proposed and investigated in this paper. The presented antenna, simply consisting of a circular-arc-shaped stub, an L-shaped stub, a microstrip feed line, and a rectangular ground plane has a compact size of $16mm{\times}38.5mm$ and is capable of generating three separate resonant modes with very good impedance matching. The measurement results show that the antenna has several impedance bandwidths for S11 ${\leq}$ -10 dB of 260 MHz (2.24 GHz to 2.5 GHz), 320 MHz (3.4 GHz to 3.72 GHz), and 990 MHz (5.1 GHz to 6.09 GHz), which can be applied to both 2.4/5.2/5.8 GHz WLAN bands and 3.5/5.5 GHz WiMAX bands. Moreover, nearly-omni-directional radiation patterns and stable gain across the operating bands can be obtained.

Tri-band Microstrip Bandpass Filter Using Dual-Mode Stepped-Impedance Resonator

  • Liu, Haiwen;Lei, Jiuhuai;Zhao, Yulong;Xu, Wenyuan;Fan, Yichao;Wu, Tiantian
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.344-347
    • /
    • 2013
  • This letter presents a compact dual-mode tri-band bandpass filter by using a short-circuited stub-loaded stepped-impedance resonator (SIR) and a short-circuited stub-loaded uniform impedance resonator. Also, a hairpin SIR geometry is introduced to miniature the size of this filter while maintaining excellent performance. The use of a short-circuited stub at the central point of the hairpin SIR can generate two resonant modes in two passbands. Its equivalent circuit structure is analyzed by using the even-odd mode theory. For demonstration purposes, a tri-band filter for the applications of the Global Positioning System at 1.57 GHz, Worldwide Interoperability for Microwave Access at 3.5 GHz, and wireless local area networks at 5.2 GHz is designed, fabricated, and measured.

Sand Moisture Measurement with Microwave Technique in Free Space at X-Band Frequency (X-밴드 주파수의 마이크로파를 이용한 자유공간에서의 모래수분측정)

  • 남현수;성재용;박남석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.5
    • /
    • pp.525-533
    • /
    • 1997
  • A nondestructive moisture measurement technique has been applied to improve the previous moisture measurement method in the building research. The experiment was done in free space using horns since it is the key element for continuous and non-destructive measurement. For this purpose a microwave bridge type analyzer at the frequency of 9.5 GHz was used to determine the moisture content of sands in the range of 1~12%. From this, the representative calibration curves were obtained. This shows that moisture measurement technique using microwave is applicabe to the measurement of moisture in non-metallic materials such as coal, pulp, foods, building materials, etc.

  • PDF

A study on the fuel of sewage sludge by torrefaction process (반탄화를 이용한 하수슬러지 연료화에 관한 연구)

  • Lee, Yoonkyung;Kim, Jae-Hyeong;Gang, Seol-Song;Kim, Gyeong-A;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.355-361
    • /
    • 2013
  • In this work, torrefaction of the sewage sludge was investigated the characteristics of torrefied products and the value of as energy resource to improve energy density and to maintain consistent quality of SRF. Torrefaction was performed two important torrefaction operational parameter, temperature($150-230^{\circ}C$) and reaction time(10-60min). As raising the torrefaction temperature at long reaction times, the moisture content of torrefied products was decreased, while the heating value was increased. Moreover, increasing of the torrefaction temperature led to a increase of the content of the carbon up to 60% compare to the initial the sample, and a decrease of the content hydrogen and oxygen. Especially, Average heating value was 4,818 kcal/kg regardless of the reaction time when torrefaction was performed over $210^{\circ}C$. In addition, the fuel ration and coal band were improved after torrefaction because the O/C and the H/C ratio were decreased.

Effect of temperature on torrefaction of food waste to produce solid fuel (반탄화를 통한 음식물쓰레기의 연료화에서 온도에 대한 영향 비교)

  • Kim, Hyunsook;Yoo, Jaemin;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.235-240
    • /
    • 2014
  • In this study, the torrefaction of food waste was conducted to characterize its product, to find out effect of the operating temperature and to assess the feasibility of being used as fuel. The operating temperature was varid from $180^{\circ}C{\sim}270^{\circ}C$ and heat was provided by using nitrogen gas or waste oil heat carrier. The solid yield and moisture content were reduced were reduced as temperature increased. The moisture content reduction and thermochemical conversion were observed at higher than $240^{\circ}C$. At low operating temperature, heat transfer efficiency was higher with wast oil heat carrier. As temperature increases, there was not difference in heat transfer efficiency of two different heating methods. The lower heating value product was increased from 660 to 6,400 Kcal/kg with nitrogen gas and 6,890 Kcal/kg with waste oil heat carrier. The elemental analysis indicates that, as temperature increases, the carbon content of product increases and oxygen content decreases. From the analysis of O/C and H/C, the torrefaction product was close to low grade coal. The characteristics of fuel converted from the food subsequent thermochemical treatment.

Geochemistry and Mineralogy of Mine Drainage Water Precipitate and Evaporite Minerals in the Hwasoon Area (화순 폐탄광지역 광산배수와 침전 및 증발잔류광물에 대한 지구화학적 및 광물학적 연구)

  • 박천영;정연중;강지성
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.391-404
    • /
    • 2000
  • This study investigated the geochemical characteristics of mine drainage discharged from an abandoned coal mine in the Hwasoon area. Surface water samples were collected from 23 locations along the Hancheon creek. The concentration of Zn and Cu in stream waters was highest at low pH (3.53), whereas the content of TDS and TDI was highest at high pH (7.78) due to the concentration of Ca, $HCO_3$ and $SO_4$. At the upstream site, the Ba, Fe, Mn, Zn, and $SO_4$ contents were relatively high but decreased significantly with the distance from the coal mine. On the contrary, the Na and $NO_3$ contents were low at the upstream site but increased downstream. Yellow precipitate material collected in the Hancheon consisted mainly of iron and LOI. This yellow precipitate was heated from 100 to $900^{\circ}C$ for 1 hour. With increasing temperature, the intensity of hematite peaks were sharply produced in X-ray pattern and the absorption band Fe-O of hematite increased in IR due to dehydration and melting. The yellow to brown precipitate and evaporite materials were collected by a air-dry from the acid mine water at the laboratory. After drying, the concentration of ions in the acid water samples increased progressively in oversaturation with respect to either gypsum, ferrohexahydrite or quenstedetite. The X-ray powder diffraction studies identified that the precipitated and evaporated materials after drying were well crystallized gypsum, ferrohexahydrite and quenstedetite. Diagnostic peaks used for identification of gypsum were the 7.65, 4.28, 3.03, 2.87 and 2.48$\AA$ peaks and those for ferrohexahydrite were the 5.46, 5.12, 4.89, 4.44, 4.05, 3.62, 3.46, 3.40, 3.20, 3.03, 2.94, 2.53, 2.28, 2.07, 1.88 and 1.86${\AA} peaks. The IR spectra with OH-stretching, deformation of $H_2O$and ${SO_4}^{2-}$stretching vibration include the existence of gypsum, ferrohexahydrite and quenstedetite in the precipitated and evaporite materials. In the SEM and EDS analysis for the evaporite material, gypsum with well-crystallized, acicular, and columnar form was distinctly observed.

  • PDF

The Characteristics of properties torrefied product according to Food waste and sewage sludge mixing ratio (음식물류폐기물과 하수슬러지 혼합비율에 따른 반탄화 생성물의 연료적 특성비교)

  • Kim, Hyun Sook;Pak, Dae Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.264-270
    • /
    • 2016
  • This Study is to into fuel using a torrefation reaction to food waste. When the fuel of only food waste alone, fuel value is was performed at a ratio of sewage sludge constant attempts to prevent low. Mixing ratios of food waste and sewage sludge, 10:0, 8:2, 6:4, 5:5. Regardless mixing ratio, it was possible to confirm that decreases the moisture content of 10% or less at a reaction temperature of $240^{\circ}C$ or higher. As the ratio of the reaction temperature and the sewage sludge is high, the fixed carbon content is increased. It was measured at up to 36%(mixing ratios6:4, reaction temperature $270^{\circ}C$) from the initial 1.1%. From the reaction temperature $240^{\circ}C$ satisfied with 3000Kcal/Kg or more is a SRF criteria shows the calorific value. It was possible to obtain a heating value that is increased from the raw sample approximately sextuple. As reaction temperature is heightened, Van krevelen Diagram moved to the range of Lignite range. It was possible to obtain high fuel ratio and 5,500Kcal/kg or less of a combustility index as the sewage sludge mixing ratio becomes high. Increase the fixed carbon content, than those food waste alone solid fuel into and improved fuel costs, it is necessary to ensure that the quality of the fuel is improved.