• Title/Summary/Keyword: Coal Mine Drainage

Search Result 99, Processing Time 0.021 seconds

Management of Mining-related Damages in Abandoned Underground Coal Mine Areas using GIS

  • Kim Y. S.;Kim J. P.;Kim J. A.;Kim W. K.;Yoon S. H.;Choi J. K.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.253-255
    • /
    • 2004
  • The mining-related damages such as ground subsidence, acid mine drainage(AMD), and deforestation in the abandoned underground coal mine areas become an object of public concern. Therefore, the system to manage the miningrelated damages is needed for the effective drive of rehabilitation activities. The management system for Abandoned Underground Coal Mine using GIS includes the database about mining record and information associated with the mining-related damages and application programs to support mine damage prevention business. Also, this system would support decision-making policy for rehabilitation and provide basic geological data for regional construction works in abandoned underground coal mine areas.

  • PDF

폐광 전후 삼탄 광산배수의 수질특성과 의의

  • 정영욱;강상수;임길재;홍성규;조원재;조영도;전호석;민정식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.422-425
    • /
    • 2003
  • This study was carried out to apprehend the variation of quality of mine drainage in the abandoned Samtan coal mine. After closure of coal mine, although still pumping, water level in underground was raised to loom and the concentration of some elements such as Fe and Mn was elevated. At present, the worst pollution source in this area is too the acidic leachate drained from uncovered mine waste impoundment. The flow rate of mine drainage from the adit is ave. about 20,000t/d. If water were flooded and deteriorated due to stopping pumping, the impact of the mine drainage on the stream around the abandoned mine would be more severe. Therefore, It is considered that the prediction of water quality of mine drainage from the adit after stopping pumping will be very important with a view to establishing countermeasures.

  • PDF

Pollution by Acid Mine Drainages from the Daeseong Coal Mine in Keumsan (금산(錦山) 대성탄철지성(大成炭鐵地城) 산성폐수(酸性廢水)에 의한 오염(汚染))

  • Song, Suckhwan;Min, Ell Sik;Kim, Myung Hee;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.105-116
    • /
    • 1997
  • This study is for extent of polluted area by acid mine drainage from the Daeseong coal mine, Keumsan. Black shales of the Changri Formation containing the Daeseong coal mine are geochemically similar to those from the North America as well as Europe. Comparing with geochemical compositions and relative ratios, coal bearing and non-coal bearing soils are similar to the stream sediments influenced and not influnced by the acid mine drainage, respectively. These characteristics suggest that acidification of the soils and of the stream sediments are related to the the coal bearing black shale. Soil waters beneath the coal bearing soil have low pH and high cation contents than those beneath non-coal bearing soil, suggestive of extractions of cations with increasing oxidizations within the soils. Surface waters show that those influenced by the acid mine drainage are low pH, and have high $SO_4{^{2-}}$, $Mg^{2+}$, $Fe^{2+}$, Mn and slightly lower DO, suggesting that heavy pollutions have been progressed in these area. Geochemical comparisons between the polluted surface water and adjacent black shales suggest that pollutions of the surface water are related to the black shales.

  • PDF

Numerical simulation on gas continuous emission from face during roadway excavation

  • Chen, Liang;Wang, Enyuan;Feng, Junjun;Li, Xuelong;Kong, Xiangguo;Zhang, Zhibo
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.297-314
    • /
    • 2016
  • With the mining depth continuously increasing, gas emission behaviors become more and more complex. Gas emission is an important basis for choosing the method of gas drainage, gas controlling. Thus, the accurate prediction of gas emission is of great significance for coal mine. In this work, based on the sources of gas emission from the heading faces and the fluid-solid coupling process, we established a gas continuous dynamic emission model, numerically simulated and applied it to the engineering. The result was roughly consistent with the actual situation and shows the model is correct. We proposed the measures of reducing the excavation distance and borehole gas drainage based on the model. The measures were applied and the result shows the overproof problem of gas emission disappears. The model considered the influence factors of gas emission wholly, and has a wide applicability, promotional value. The research is of great significance for the controlling of gas disaster, gas drainage and pre-warning coal and gas outbursts based on gas emission anomaly at the heading face.

An Overview of Coal Mine Drainage Treatment (석탄광의 광산배수처리기술 현황 및 전망)

  • 정영욱
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.107-111
    • /
    • 2004
  • This study was undertaken to summarize of the efficiencies of the passive treatment system and suggest future studies for the solution of mine drainage problem. Flow rates of mine drainage from the abandoned coal mines are about 80,000 ton/day. Contaminated mine drainages over about 50 ton/day of flow rate were treated by passive treatment facilities such as Successive Alkalinity Producing Systems(SAPS), oxidation pond and oxic wetland. Chemical analysis for 13 passive coal mine treatment facilities showed that SAPS was the core of treatment facilities because the variation of Fe removal rates was relatively smaller than any other processes and re-leaching of Fe was not measured. The performance and life of SAPS depended on decrease in permeability and retention time due to accumulation of sludge. It is inferred that upgrade of design of the passive treatment system and in-situ treatment using underground void will be necessary for the amelioration of the mine drainage with high metal loading rates.

A Study on mine drainage characteristcs as abandoned Coal mine in Gyeongsang province (경상도 일대의 폐탄광 갱내수의 수질 특성 연구)

  • Jung, Young-Kook;Hong, Ji-Hye;Lee, Dong-Jin;Kim, Jeong-Phill;Kim, Dae-Gi;Joo, Sang-Don
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1440-1445
    • /
    • 2008
  • There are 21 abondoned coal mines drained out mine water in gyeong sang do. We monitored the water quality of 31 mine drainage from 1995. The most of mine drainage was neutral as the average pH was 6.22 and Fe, Mn, Al concentration was below 10mg/L. The result showed the tendency of decreasing of flow and metal concentration. The highest Mn concentration was detected in bonghwa area and the hightest Fe concentration was detected in munkyung area. It means that the water quality is closly related to geological features.

  • PDF

KDICical Characteristics and Microbial Activity of Streams Contaminated by The Abandoned Coal Mine Drainage (폐탄광 배수에 의해 오염된 하천의 화학적 특성과 미생물 활성)

  • Cho, Kyoung-Suk;Ryu, Hee-Wook;Chang, Young-Keun
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.365-373
    • /
    • 1996
  • A survey was carried out to investigate the contamination of streams by the acid mine drainage originated from the abandoned coal mines and coal refuse piles. The physico-KDICical characteristics such as pH, sulfate and elements concentrations in the water and sediment in streams were analyzed. Microbial activity in the sediment was evaluated by measuring dehydrogenase activities. At sites contaminated by acid mine drainage, the pH of the water and sediment declined to acidic range from neutral due to the accumulation of sulfate. The dehydrogenase activity ranged from 12 to $170{\mu}g-TPF{\cdot}g-dry\;soil^{-1}{\cdot}24h^{-1}$ at the contaminated sites, whereas uncontaminated sites had activities of 1,176~4,259 ${\mu}g-TPF{\cdot}g-dry\;soil^{-1}{\cdot}24h^{-1}$. The dehydrogenase activity was significantly affected by low pH of the sediment, indicating that high concentration of sulfate inhibited microbial activity. The concentrations of heavy metals such as Pb and Fe in contaminated sdeiment (37~46 ppm Pb; 46,000~464,000 ppm Fe) were much higher than those in the uncontaminated sediment. The concentration of Al in the contaminated water acidfied by coal mine drainage was in the range of 11 to 42 ppm. Compared with those in the uncontaminated sediment, the concentrations of Mn, Mg and Ca in contaminated sediment were low because of the leaching from soil to water by the acidfied stream water.

  • PDF

A Feasibility Assessment of CMDS (Coal Mine Drainage Sludge) in the Stabilization of Mercury Contaminated Soil in Mine Area (광산지역 수은 오염토양 안정화를 위한 석탄광산배수슬러지의 적용성 평가)

  • Koh, Il-Ha;Kwon, Yo Seb;Moon, Deok Hyun;Ko, Ju In;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study assessed the feasibility of coal mine drainage sludge (CMDS) as a stabilizing agent for mercury contaminated soil through pot experiments and batch tests. In the pot experiments with 43 days of lettuce growth, the bioavailability of mercury in the amended soil and mercury content of the lettuce were decreased by 46% and 50%, respectively. These results were similar to those of the soil amended with the sulfide compound (FeS) generally used for mercury stabilization. Thus, CMDS could be an attractive mercury stabilizer in terms of industrial by-product recycling. Batch tests were conducted to examine mercury fractionation including reactions between the soil and acetic acid. The result showed that some elemental fraction changed to strongly bounded fraction rather than residual (HgS) fraction. This made it possible to conclude that mercury adsorption on oxides in CMDS was the major mechanism of stabilization.

광산배수 오염평가 기준도출에 관한 연구

  • 지상우;고주인;강희태;김재욱;김선준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.382-385
    • /
    • 2003
  • QAMDI(Quantified Acid Mine Drainage Index) was developed for more synthesised, qualified and quantified assessment index which can be applied to both coal and metal mine drainage. QAMDI is calculated using three parameter groups i.e. acidity, sulfate contents and toxic metal contents. Since QAMDI expressed in terms of concentration. It reveals the different status of each mine drainage more clearly. QAMDI can be converted to the quantity of pollutant loading by being multiplied by the water flux.

  • PDF

A Study on the Assessment of the Contamination by Acid Mine Drainage in Abandoned Coal Mines (국내폐탄광의 산성폐수 오염도 평가에 관한 연구)

  • 최우진
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.31-38
    • /
    • 1997
  • Temporal and spatial comparisons of acid mine drainage contaminated waters are difficult because of the complex physico-chemical nature of the pollutant. In the present study, an acid mine drainage index has been developed and evaluated for the assessment of surface waters. AMD index is calculated using a modified arithmetic weighted index using seven parameters which are most indicative of AMD contamination, i. e. pH value, sulphate, iron, zinc, aluminum, copper and manganese. Weighting is used to express the relative indicator value of each parameter. The proposed AMD index is used to quantify contamination from acid mine drainage over ten different old mine sites and assess the degree of impact on surface on surface waters. As a result of AMD evaluation, the Sukbong Mine located near the Moonkyung province showed lowest AMD value indicating the worst acid mine drainage quality. In overall, Youngdong mine sites showed higher contaimination compared to the other mine sites including Youngsuh, Choongbu, Suhbu and Nambu area.

  • PDF