• Title/Summary/Keyword: Coal Fly Ash

Search Result 356, Processing Time 0.032 seconds

Characteristics of Unburned Material Derived from Coal-fired Power Plant Burning Low Grade Coal (저급탄 연소 석탄회의 미연물질 특성 분석)

  • Park, Ho-Young;Kim, Young-Ju;Kim, Tae-Hyung;Baek, Se-Hyun;Kim, Kyung-Soo;Jeoung, Kwon-Dal
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.68-74
    • /
    • 2012
  • Sub-bituminous coals have been used increasingly in coal-fired power plants with a proportion of over 50% in the blend with bituminous coals. As a result, the unburned material in fly ash has increased and is causing problems in utilizing the fly ash as an additive for concrete production. In this study, analysis of fly ash obtained from a 500 MWe power plant was carried out and unburned material in the fly ash found to be soot. The coals used in the plant were analyzed with CPD model to investigate the sooting potential depending on the coal type and blending ratio.

Adsorption Characteristics of Cobalt Ion with Zeolite Synthesized by Coal Fly Ash (석탄계 비산재로 합성한 제올라이트를 이용한 코발트 이온의 흡착특성)

  • Lee, Chang-Han;Suh, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.941-946
    • /
    • 2009
  • Two types of synthetic zeolites, commercially used (Z-WK) and synthesized by coal fly ash (Z-C1), and raw coal fly ash(F-C1) were examined for its kinetics and adsorption capacities of cobalt. Experimental data are fitted with kinetic models, Lagergen $1^{st}$ and $2^{nd}$ order models, and four types of adsorption isotherm models, Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan. Synthesized zeolite (Z-C1) which had 1.51 of Si/Al ratio was synthesized by raw coal fly ash from a thermal power plant. Adsorption capacities with three types of adsorbents, Z-WK, Z-C1, and F-C1, were in the order of Z-C1 (94.15 mg/g) > F-C1 (92.94 mg/g) > Z-WK (88.56mg/g). The adsorption kinetics of Z-WK and Z-C1 with cobalt could be accurately described by a pseudo-second-order rate equation. The adsorption isotherms of Z-WK and Z-C1 with cobalt were well fitted by the Langmuir and Redlich-Peterson equation. Z-C1 will be used to remove cobalt in water as a more efficient absorbent.

Fabrication of Mullite Short Fibers from Coal Fly Ash (석탄회로부터 뮬라이트 단섬유의 제조)

  • Kim, Byung-Moon;Park, Young-Min;Lyu, Seung-Woo;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.235-241
    • /
    • 2006
  • Mullite short fibers have been fabricated by adapting the Kneading-Drying-Calcination (KDC) process and characterized. The effect of the addition of foaming agent and calcination temperature on the formation of mullite fibers from coal fly ash, was examined. In the present work, ammonium alum $NH_4Al(SO_4)_2\;12H_2O$ synthesized trom coal fly ash and sodium phosphate $Na_2HPO_4\;2H_2O$ were used as foaming agents. After calcination at $1300^{\circ}C$ for 10 h and then etching with 20% HF solution at $50^{\circ}C$ for 5 h using a microwave heating source, the alumina-deficient $(AI_2O_3/SiO_2$ = 1.13, molar ratio) orthorhombic mullite fibers with a width of ${\sim}0.8mm$ (aspect ratio >30), were prepared from the coal fly ash with $AI_2O_3/SiO_2$ = 0.32, molar ratio by the addition of $NH_4AI(SO_4)_2\;12H_2O$, and with further addition of 2 wt% sodium phosphate. The excessive addition of sodium phosphate rather decreased the formation of mullite fibers, possibly due to the large amount of liquid phase prior to mullitization reaction.

Sulfating Reaction of Coal Fly Ash and Microwave Extraction of Aluminum Ions (석탄회의 황산화반응과 알루미늄이온의 마이크로파 추출)

  • 박영증;박영민;양태영;윤석영;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.897-901
    • /
    • 2003
  • The sulfating reaction of coal fly ash with ammonium sulfate and the microwave extraction of aluminum ions from the resultant materials using sulfuric acid have been investigated. The (NH$_4$)$_3$Al(SO$_4$)$_3$ formed by the reaction of coal fly ash and ammonium sulfate decomposed to NH$_4$Al(SO$_4$)$_2$ at $\geq$ 350$^{\circ}C$. The maximum efficiency of aluminum ions extracted from the sulfating reaction product (400$^{\circ}C$, 120 min) by microwave heating (90$^{\circ}C$, 240 min) using 1 M H$_2$SO$_4$ was 84% (based on Al content in coal fly ash) but 77% by conventional heating at same condition.

Carbonization of Coal-Fly Ash Containing High CaO Compound (CaO 화합물이 다량 함유된 비산재의 탄산화)

  • Sim, Jun Soo;Lee, Ki Gang;Kim, Yu Taek;Kang, Seung Ku
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • This study was conducted to recycle fly ash containing an abundance of CaO generated from combustion in a circulating layer as a carbon storage medium. The study utilized XRD, TG-DTA and XRF analyses during the hydration of fly ash and identified calcium substances within fly ash that could be used in a carbonation process. $Ca^{2+}$ ions in the calcium substances were easily converted to hydrates. A carbonation experiment was done, which used the method of $CO_2$ gas injection to produce suspensions by mixing fly ash with distilled water. The results were analyzed using TG-DTA, XRD, and pH meter measurements. The study was able to verify that the reaction was completed at a $CO_2$ flow rate of 300cc/min approximately 30 minutes after an injection into a solution with a solid-liquid ratio of 1 : 10 of fly ash and distilled water. Moreover, the stirring time of the suspensions did not influence the reaction, and the reaction time was found to diminish as the portion of the fly ash became smaller. Thus, this study produced carbon storage fly ash having a $CO_2$ storage rate of about 71% through the utilization of the CaO content contained within fly ash.

The Analysis of Slope Stability on Clay-Fly Ash Mixtures Embankment (점토-Fly Ash 혼합물로 된 제체의 사면안정 해석(지반공학))

  • 권무남;정성욱;김현기
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.477-483
    • /
    • 2000
  • Fly ash is the unburned residue resulting from the combustion of coal in utility and industrial boilers such as thermal power plants. Annually about 5 million tons of fly ash is being produced in korea. Less than 25 percent of total volume of fly ash is currently being used effectively for some ways. In the future, the volume of fly ash discharge from thermal power stations will be increasing more and more, and the development of the utilization of high volume fly ash is required. Fly ash has a lower compacted density and specific gravity than coarse grained natural aggregates but equivalent strength properties indicating that the fly ash could be used as a structural fill materials. So, clay-fly ash mixtures can be used as a fill material in the construction of embankments. Laboratory tests have been carried out to determine the physical, chemical, and geotechnical characteristics of the clay and fly ash. The fly ash is mixed with the clay in different proportions and the geotechnical characteristics of the mixtures have been studied also. In this study describes the results of the experimental study. The implications of the use of clay and clay-fly ash mixtures on the stability of embankments are discussed.

  • PDF

Research for geotechnical properties of Fly ash-Lime-Sludge mixture (플라이 애시-생석회-하수처리 슬러지 혼합물의 지반공학적 특성 연구)

  • 구정민;권무남;이상호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.122-135
    • /
    • 2002
  • Although fly ash possesses viable engineering properties, an overwhelming majority of fly ash from coal combustion is still placed in storage or disposal sites. Similarly, sludges generated from various water treatment operations are predominantly subjected to the fate of land disposal. To prepare sludges fur land disposal typically requires time consuming dewatering schemes, which can become extremely difficult to execute depending upon the composition of the sludge and its affinity for water. This study was undertaken to reuse fly ash and sludge as construction materials. This paper includes geotechnical properties of fly ash and fly ash-lime-sludge mixture and results of compaction test, UU-test, falling head test, leaching test and CBR test. The effect on mixing fly ash with sludge and lime and the effect of curing period and the results are obtained from this test.

A Study on Strength of Cement Mortar with Micro Grinding High Volume Fly-Ash (플라이애쉬를 다량 사용한 시멘트 경화체의 강도증진에 관한 실험적연구)

  • 정재동
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.82-87
    • /
    • 2001
  • The purpose of this study is for the active use of the fly ash, which is a by-product of the combustion pulverizes coal thermal power plants, to compensate for the lack of landfill and for conservation of energy, by using fly ash as the supplementary cementitious material, and to prove its possibility as the related products of the cement. First of all, the ordinary fly ash is grinded in a special method and its fineness is controlled from 6000$\textrm{cm}^2$/g to 8000$\textrm{cm}^2$/g, then replaced it with the 10% to 80% of the cement mortar in order to test physics characteristics. The first experiment conducts on the strength development in fly ash replacing content and fineness. and the changes of the flow values, incorporating fly ash into cement. The second one is about the slow development of the strength of the fly ash mortar in early ages, and improves its strength with the activator $Na_{2}SO_{4}$, using high volume fly ash.

  • PDF

Experimental Study for the Development of the Mixing Ratio as a Compaction Pile (다짐말뚝 재료로서 쇄석과 저회의 적정 혼합비 도출을 위한 실험적 연구)

  • Leem, Hansoo;Kim, Sunkon;Lee, Jooho;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.5-16
    • /
    • 2012
  • In the case of using the soil materials created by cutting in-situ ground directly without adjusting particle size, it is recommendable to seek the compaction property or material constant required for filling design or density control through indoor test, and many studies on this subject have been carried out during that time. The researches conducted during that time, however, were focused on the mixed materials with different diameters that exist in a natural condition. There has been no study conducted using coal fly ash that is by-product of the thermal power plant that is actively considered as the building materials. Therefore, this study was aimed at implementing compaction test and examining the basic engineering property in order to explore the influence of crushing the particles through compacting the admixture of crushed stone and coal fly ash produced from thermal power plant on its engineering property, and then the impact of the admixture volume of each material on compaction property and material property by conducting the One-Dimensional Compression Test. As result of compaction test, the optimum moisture ratio of coal fly ash was shown to be approx. 23%. As result of compaction test in accordance with the mixed ratio of coal fly ash and crushed stone under the same compaction energy and moisture ratio, dry unit weight tended to drop when the mixed ratio of coal fly ash exceeded 30%, while it reached approx. $1.81gf/cm^3$ when the mixed ratio was 30%. As result of One-Dimensional Compression Test in accordance with the mixed ratio of crushed stone and coal fly ash, the change in void ratio by particle crushing was at the highest level in the case of coal fly ash 100%, while the lowest level in the case of crushed stone 100%. In the case of mixed materials of crushed stone and coal fly ash, compression index was at the lowest level in case of coal fly ash 30%, and therefore this ratio of mixed material was judged to be the most stable from an engineering aspect.

Identification Factor Development of Particulate Matters Emitted from Coal-fired Power Plant by FE-SEM/EDX Analysis (FE-SEM/EDX 분석법을 이용한 석탄화력발전소에서 배출되는 입자상물질의 확인자 개발)

  • Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1333-1339
    • /
    • 2017
  • Coal-fired power plants emit various Particulate Matter(PM) at coal storage pile and ash landfill as well as the stack, and affect the surrounding environment. Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray analyzer(FE-SEM/EDX) were used to develop identification factor and the physico-chemical analysis of PM emitted from a power plant. In this study, three samples of pulverized coal, bottom ash, and fly ash were analyzed. The pulverized coal was spherical particles in shape and the chemical composition of C-O-Si-Al and C/Si and C/Al ratios were 200~300 on average. The bottom ash was spherical or non-spherical particles in shape, chemical composition was O-C-Si-Al-Fe-Ca and C/Si and C/Al ratios were $4.3{\pm}4.6$ and $8.8{\pm}10.0$. The fly ash was spherical particles in shape, chemical composition was O-Si-Ai-C-Fe-Ca and C/Si and C/Al ratios were $0.5{\pm}0.2$ and $0.8{\pm}0.5$.