• 제목/요약/키워드: Coal Fired Power Plant

검색결과 260건 처리시간 0.041초

석탄화력 발전소, 숯가마, 디젤차량에서 배출되는 Black Carbon의 물리화학적 특성화 연구 (Physico-Chemical Characterization of Black Carbon Emitted from Coal-fired Power Plant, Charcoal Kiln and Diesel Vehicle)

  • 새살도;김진영;심상규;진현철;김종수
    • 한국대기환경학회지
    • /
    • 제29권2호
    • /
    • pp.152-162
    • /
    • 2013
  • The physico-chemical characteristics and nanostructure of the aerosol samples from a coal-fired power plant, a charcoal kiln and diesel vehicles were investigated with focusing on black carbon (BC). Aerosols from the coal-fired power plant were mostly comprised of mineral ash spheres which are heterogeneously mixed. The main components of the aerosols from coal-fired power plant were calcium compounds, iron oxide, alumino-silicate without BC. The typical combustion-generated BC which shows the shape of bunch of grapes with 20~50 nm particles which were detected in aerosol particles from diesel vehicles. The nanostructure of each BC particle shows the shape of concentric circles which is comprised of closely-packed graphene layers. Aerosols from charcoal kiln were likely condensed organic carbon generated from the low-temperature combustion process.

석탄화력발전 출력감소가 계통한계가격 및 온실가스 배출량에 미치는 영향 (Effect of Power Output Reduction on the System Marginal Price and Green House Gas Emission in Coal-Fired Power Generation)

  • 임지용;유호선
    • 플랜트 저널
    • /
    • 제14권1호
    • /
    • pp.47-51
    • /
    • 2018
  • 본 연구에서는 석탄화력발전의 출력 감소가 계통한계가격과 온실가스감축량에 어떻게 영향을 미치는지 분석하였다. 분석방법은 국영 발전회사에서 이용하는 전력거래예측프로그램을 이용하였으며 전력계통의 운영조건은 제7차 전력수급기본계획의 전력수요와 전원구성을 근거로 하였다. 분석결과 전체 석탄화력발전의 최대출력을 29 [%]까지 감소한 경우 계통한계가격은 감소전과 비교하여 12 [%p] 상승하고 온실가스 배출량은 9,966 [kton] 감축되었다. 또한 석탄화력발전기 전체 용량의 30 [%]에 해당하는 저효율 석탄화력발전기 16기를 정지한 경우 계통한계가격은 14 [%p] 까지 증가하였고 온실가스 배출량은 12,574[kton]까지 감축 가능함을 알 수 있었다.

  • PDF

Performance Analysis of Supercritical Coal Fired Power Plant Using gCCS Simulator

  • Tumsa, Tefera Zelalem;Mun, Tae-Young;Lee, Uendo;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.37-40
    • /
    • 2014
  • Capturing the carbon dioxide emitted from coal-fired power plants will be necessary if targeted reduction in carbon emissions is to be achieved. Modelling and simulation are the base for optimal operation and control in thermal power plant and also play an important role in energy savings. This study aims to analyze the performance of supercritical coal fired power plant through steady and dynamic simulation using a commercial software gCCS. A whole power plant has been modeled and validated with design data of 500 MWe power plant, base and part load operations of the plant were also evaluated, consequently it had been proven that the simulated result had a good agreement with actual operating data. In addition, the effect of co-firng on the plant efficiency and flue gases were investigated using gCCS simulator.

  • PDF

청정화력발전 기술 육성 방안 연구 (A Study on Methods for Developing by Nurturing Clean Thermal Power Generation Technology)

  • 김영미;이원학
    • 한국기후변화학회지
    • /
    • 제9권2호
    • /
    • pp.197-207
    • /
    • 2018
  • The Korean government views coal-fired power plants as the key cause of the fine dust generation, and is developing an energy policy to replace and demolish old coal-fired power plants. According to the Eighth Power Supply Base Plan (2017-2031), the maximum power capacity in 2030 is expected to be 100.5GW, which is 17.9% higher than the current level (85.2GW). The plan aims to reduce the facility size and power generation ratio from nuclear and coal resources to even lower levels than today, and to rapidly expand power generation from new and renewable energy. Despite that, the proportion of coal power generation is still much higher than other resources, and it is expected that the reliance on goal will maintain for next several decades. Under such circumstances, the development, supply, and expansion of clean coal technology (CCT) that is eco-friendly and highly efficient, is crucial to minimize the emission of pollutants such as carbon dioxide and fine dust, as well as maximize the energy efficiency. The Korean government designated the Yong-Dong Thermoelectric Power Plant in Gangneung to develop clean coal power generation, and executed related projects for three years. The current study aims to suggest a plan to develop parts, technologies, testing, evaluation, certification, and commercialization efforts for coal-fired power generation, In addition, the study proposes a strategy to vitalize local economy and connect the development with creation of more jobs.

An Exploratory Study of Material Flow Cost Accounting: A Case of Coal-Fired Thermal Power Plants in Vietnam

  • NGUYEN, To Tam
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권5호
    • /
    • pp.475-486
    • /
    • 2022
  • The purpose of this paper is to examine the use of material flow cost accounting (MFCA) in Vietnam's coal-fired thermal power plants. This study is based on the contingency and system theories to explain the application of management tools and analyze steps of input, output, and process in manufacturing. Costs in producing process-based MFCA include material cost, energy cost, system cost, and waste management cost. The exploratory case study methodology is used to describe and answer two questions, namely "How coal flow cost is recognized?" and "Why waste in material consumption can be harmful to the environment?". By analyzing the Quang Ninh and Pha Lai coal-fired thermal power plants that are the typical plants, this paper identifies the flow of primary material in these plants as a basis for determining losses for the business. The material flow of coal-fired thermal power plants provides the basis for the use of the MFCA. The manufacturing of electrical items in these plants is divided into four stages, each with its own set of losses. As a result, some phases in the application of MFCA are suggested, as well as some other elements required for MFCA application in coal-fired thermal power plants.

Specification of Chemical Properties of Feed Coal and Bottom Ash Collected at a Coal-fired Power Plant

  • Ma, Chang-Jin;Kim, Jong-Ho;Kim, Ki-Hyun;Tohno, Susumu;Kasahara, Mikio
    • Asian Journal of Atmospheric Environment
    • /
    • 제4권2호
    • /
    • pp.80-88
    • /
    • 2010
  • In order to offer a better understanding of air pollution of China as well as East Asia we attempted to characterize the chemical properties of the raw coal materials mined in China and their combusted bottom ashes generated from coal fired power plant. To this end, we measured the chemical characteristics of individual bottom ashes and feed coal fragments collected at a coal fired power generator which was operated with the raw coal dug at a coal mine in China. The chemical properties of these two sample types were determined by a synchrotron radiation X-ray fluorescence (SR-XRF) microprobe method. Through an application of such technique, it was possible to draw the 2D elemental maps in and/or on raw coal fragments and fired bottom ashes. The pulverized fine pieces of feed coal mainly consisted of mineral components such as Fe, Ca, Ti, Ca, and Si, while Fe was detected as overwhelming majority. The elemental mass of combusted bottom ash shows strong enrichment of many elements that exist naturally in coal. There were significant variations in chemical properties of ash-to-ash and fragment-to-fragment. Although we were not able to clearly distinguish As and Pb peaks because of the folding in their X-ray energies, these two elements can be used as tracers of coal fire origin.

석탄화력발전소 보일러 연소계통의 모델개발에 관한 연구 (A Stduy on Model Development of Boiler Combustion System on Coal Fired Power Plant)

  • 문채주;김용구;정환주
    • 조명전기설비학회논문지
    • /
    • 제18권3호
    • /
    • pp.65-73
    • /
    • 2004
  • 석탄화력발전소의 보일러계통은 구성기기 사이에 수많은 상호관계를 갖는 대규모, 비선형 계통이다. 이러한 복잡한 계통의 해석에서 동특성 모의는 대규모 상호관계를 지속적으로 추적하는 강력한 방법으로 인식되고 있다. 보일러계통은 공기/가스 시스템과 물/증기 시스템으로 구성된다. 보일러의 오염물질 배출에 관한 최근 환경규제의 강화와 보일러의 물성치에 대한 설게 검증 요건 때문에 상업용 프로그램이 보일러 계통의 해석에 사용된다. 이 논문에서는 모의 도구로써 EPRI(미국전기연구소)에서 개발한 MMS를 사용하여 모델개발을 논의하였다. MMS에서 사용하여 개발된 모델은 한국표준석탄화력발전소의 보일러 연소계통에 대한 설계 및 현장데이터를 시험하였다. 개발된 모델은 정상상태 및 천이상태 조건에서 ${\pm}$5% 이내로 연소계통이 잘 응답하는 것으로 결과에서 보여준다. 이 논문에서 연소계통의 해석에 대한 개발된 모델은 일반적일고, 어떤 형식의 석탄호력발전소에도 적용이 가능하다.

Economic analysis of biomass torrefaction plants integrated with corn ethanol plants and coal-fired power plants

  • Tiffany, Douglas G.;Lee, Won Fy;Morey, Vance;Kaliyan, Nalladurai
    • Advances in Energy Research
    • /
    • 제1권2호
    • /
    • pp.127-146
    • /
    • 2013
  • Torrefaction technologies convert assorted biomass feedstocks into energy-concentrated, carbon neutral fuel that is economically transported and easily ground for blending with fossil coals at numerous power plants around the world without needs to retrofit. Utilization of torrefied biomass in conventional electric generating units may be an increasingly attractive alternative for electricity generation as aging power plants in the world need to be upgraded or improved. This paper examines the economic feasibility of torrefaction in different scenarios by modeling torrefaction plants producing 136,078 t/year (150,000 ton/year) biocoal from wood and corn stover. The utilization of biocoal blends in existing coal-fired power plants is modeled to determine the demand for this fuel in the context of emerging policies regulating emissions from coal in the U.S. setting. Opportunities to co-locate torrefaction facilities adjacent to corn ethanol plants and coal-fired power plants are explored as means to improve economics for collaborating businesses. Life cycle analysis was conducted in parallel to this economic study and was used to determine environmental impacts of converting biomass to biocoal for blending in coal-fired power plants as well as the use of substantial flows of off-gasses produced in the torrefaction process. Sensitivity analysis of the financial rates of return of the different businesses has been performed to measure impacts of different factors, whether input prices, output prices, or policy measures that render costs or rewards for the businesses.

FE-SEM/EDX 분석법을 이용한 석탄화력발전소에서 배출되는 입자상물질의 확인자 개발 (Identification Factor Development of Particulate Matters Emitted from Coal-fired Power Plant by FE-SEM/EDX Analysis)

  • 박정호
    • 한국환경과학회지
    • /
    • 제26권12호
    • /
    • pp.1333-1339
    • /
    • 2017
  • Coal-fired power plants emit various Particulate Matter(PM) at coal storage pile and ash landfill as well as the stack, and affect the surrounding environment. Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray analyzer(FE-SEM/EDX) were used to develop identification factor and the physico-chemical analysis of PM emitted from a power plant. In this study, three samples of pulverized coal, bottom ash, and fly ash were analyzed. The pulverized coal was spherical particles in shape and the chemical composition of C-O-Si-Al and C/Si and C/Al ratios were 200~300 on average. The bottom ash was spherical or non-spherical particles in shape, chemical composition was O-C-Si-Al-Fe-Ca and C/Si and C/Al ratios were $4.3{\pm}4.6$ and $8.8{\pm}10.0$. The fly ash was spherical particles in shape, chemical composition was O-Si-Ai-C-Fe-Ca and C/Si and C/Al ratios were $0.5{\pm}0.2$ and $0.8{\pm}0.5$.

석탄연소 화력발전소에서 미연탄소분 농도 증가가 보일러 성능에 미치는 영향에 관한 연구 (Boiler Performance Characteristics Change by UC Contents Increase for Coal Fired Power Plant)

  • 김태형;박병철
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.99-102
    • /
    • 2015
  • To operate coal fired power plant efficiently is considered unburned carbon as important factor. But, unburned carbon contents change does not have an impact on Boiler performance simultaneously. we evaluated that unburned carbon contents change had an little influence on unburned carbon loss change for performance side at a real power plant.

  • PDF