• 제목/요약/키워드: Coal Briquette

검색결과 30건 처리시간 0.023초

가정용 연탄보일러의 Non-CO2 배출계수 개발 (Development of Non-CO2 Emission Factor of the Coal Briquette Boiler)

  • 송가람;조창상;이대겸;전의찬
    • 한국기후변화학회지
    • /
    • 제8권2호
    • /
    • pp.163-169
    • /
    • 2017
  • In this study, Non-$CO_2$ emission factors were estimated for the coal briquette boiler, which is the Korean heating system. As a result, the $CH_4$ and $N_2O$ emission factors of the coal briquette boiler were estimated to be $11.76gCH_4/TJ$ and $7.44kgN_2O/TJ$, respectively. The results showed that $CH_4$ emission factor was 12 times and $N_2O$ emission factor was 5 times higher than IPCC default value. Also the emission factors developed in this study were compared with a precedent study. The results indicated that were similar to open the air inlet of coal briquette stove because the combustion condition of this study was similar to that of coal briquette stove.

서울시 연탄 제조업의 입지 특성과 정부 정책의 영향 (The Location Characteristics of the Coal Briquette Manufacturing Industry in Seoul and the Impact of Government Policy)

  • 김정숙;장영진
    • 한국지역지리학회지
    • /
    • 제17권2호
    • /
    • pp.216-230
    • /
    • 2011
  • 연탄 제조업은 가정용 연료의 주요 공급원으로서 중량물의 저부가가치 제품을 생산하는 특성으로 인해 운송비의 비중이 높을 뿐 아니라, 대중 연료로서 연탄의 공공재적 성격이 부각됨에 따라 정부의 강력한 통제를 받아왔다. 본 연구에서는 이와 같은 연탄 제조업의 주요 입지 요인 및 입지 유형을 규명하고, 서울특별시 연탄 제조업을 대상으로 입지 특성을 고찰하며, 정부 정책이 연탄 제조업의 공간적 특성에 미친 영향을 살펴보았다. 사례지역의 연탄 제조업은 시장 지향 및 적환지 지향 입지를 보이면서 동시에 다양한 공간 정책으로 인해 공간적 변화를 겪었다. 공간 정책 가운데 유도된 공간 정책은 연탄 제조업의 신규 입지 및 설비 확대에 중요한 요인으로 작용했으나, 명시적 공간 정책은 산업 특성에서 기인하는 입지 특성을 일부 수정 촉진하는데 그쳤을 뿐 근본적인 입지 변화를 가져오지는 못했다는 점에서 영향력이 제한적이다.

  • PDF

연탄재(煉炭滓)의 미연탄소(未燃炭素) 함량(含量)에 따른 소성(燒成) 에코벽돌 특성(特性) (Properties of the Sintered Eco-brick according to the Unburned Carbon Content of the Coal Briquette Ash)

  • 박홍규;유승우;정문영
    • 자원리싸이클링
    • /
    • 제19권3호
    • /
    • pp.16-23
    • /
    • 2010
  • 최근 고유가 시대로 접어들면서 연탄의 사용량이 급격하게 증가하고 있어 이때 발생되는 연탄재의 친환경적인 순화자원화 기술개발이 필요하게 되었다. 연탄재에는 가연성분인 미연탄소와 고온열적특성이 우수한 뮬라이트 성분이 다량 함유되어 있어 소성 에코벽돌의 원료로 적합하다고 판단된다. 이 연구의 목적은 연탄재에 함유되어 있는 미연탄소가 소성 에코벽돌의 특성에 어떠한 영향을 미치는 가를 파악하는데 있었다. 미연탄소 함량 10.5 wt%인 연탄재 50 wt%와 폐유리 50 wt%의 배합비율로 제조한 에코벽돌을 $950^{\circ}C$로 소성한 시험체의 압축강도는 소성 점토벽돌 국내규격(KS L 4201)의 1종 규격에 해당하였다. 특히, 미연탄소 함량이 1.0 wt%인 연탄재의 배합비율을 70 wt%까지 증가시켜 제조한 소성 에코벽돌 시험체의 압축강도는 소성 점토벽돌 1종 규격에 해당하였다.

연탄재를 충전제(充塡劑)로한 고무배합(配合)에 있어서의 특성변화(特性變化) 및 그 응용(應用)에 관한 연구(硏究) (A study on the physical properties and application in rubber compounds which is used the ash of holed briquette coal as fillers)

  • 김병국;김종숭
    • Elastomers and Composites
    • /
    • 제18권1호
    • /
    • pp.8-12
    • /
    • 1983
  • The purpose of this study is to apply in various fields of products economically and practically using the characteristic of ash of holed briquette coal in maximum. According to the test results, the cure rate of ash of holed briquette coal is comparatively late. But it has shown nearly same level of physical properities compared with other fillers except hard clay and grey carbon.

  • PDF

구멍탄착화용 성형탄의 품질 (The Qualities of Molded Charcoal for Kindling Molded-Coal-Briquette)

  • 조재명;김영련;김석구;조성택;공영토
    • 임산에너지
    • /
    • 제1권2호
    • /
    • pp.28-33
    • /
    • 1981
  • To survey the present qualities of the molded and to present the base line of qualities in manufacture, the charcoal collected at 27 makers through the nation were examined. The molded charcoal examined in this paper, which is made by carbonization and molding of sawdusts from wood industries, is widely used to kindle holed-coal-briquette. The holed-coal-briquette is utilized in cooking and heating as primary energy source of ordinary households in this country. The average qualities of molded charcoal was as follows; ash content 13.95$\%$, weight 184.6g, density 0.47, time of kindling holed-coal-briquette 65.4 min., calorie 5,790 kcal/kg. The ten makers produced inferior qualities, that was 37 per cent of the 27 makers examined. The base line of qualities of molded charcoal was defined as follows; ash content below 17$\%$, weight above 175 g, falling strength above 300 mm, calorie above 5,500 kcal/kg.

  • PDF

석탄광산 배수슬러지의 연탄첨가물로서의 타당성 연구 (A Feasible Study for the Usage of Sludge in Coal Mine Drainage as a Briquette Additive)

  • 오세강;박찬오;곽용완;이영재;이현주;심연식;권현호;이재영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권6호
    • /
    • pp.72-80
    • /
    • 2010
  • Possibility of the usage of sludge generated in coal mine drainage treatments as a briquette additive was investigated by the combination of industrial, elemental, and combustion experiments. A series of briquettes having 2% and 6% of sludge were used for the experiments. Compared to the control sample, our results show that all experimental values for the briquettes are very similar. In particular, it is worthy to note that there is no obvious difference in calorific values for the briquettes containing 2% or 6% of sludge. The calorific values are 4,250~4,360 kcal/kg, 4,240~4,250 kcal/kg, 4,180~4,210 kcal/kg, and 4,270~4,360 kcal/kg for the control sample, briquette containing 6% of Hambaek sludge, briquette containing 6% of Hamtae sludge, and briquette containing 2% of Hambaek sludge, respectively. Results of ash fusion temperature show that the temperature is greater than $1,550^{\circ}C$ for the control sample. However, the temperature for the briquettes with 6% of Hambaek sludge and 2% of Hambaek or Hamtae sludge is $1,510^{\circ}C$. For a briquette containing 6% of Hamtae sludge, the temperature of ash fusion is $1,530^{\circ}C$. After combustion, environmental impacts of the briquettes with sludge were tested. Little environmental influence was observed for the combusted briquettes with sludge.

인도네시아 저등급석탄의 무결합제 성형 특성 (Characteristics of Binderless Briquettes for Indonesian Low-Rank Coals)

  • 전동혁;임영준;김상도;유지호;최호경;임정환;이시훈
    • Korean Chemical Engineering Research
    • /
    • 제53권2호
    • /
    • pp.231-235
    • /
    • 2015
  • 저등급석탄을 건조하고 무결합제로 성형하는 경우에 대한 조건별 특성 연구를 수행하였다. 인도네시아 산 두 종류의 저등급석탄을 전기오븐에서 건조시킨 후 성형에 사용하였으며, 석탄의 수분별, 입도별, 성형압력별, 보관일수별로 압축강도를 측정하여 성형특성을 비교하였다. 석탄의 수분별로는 10~15 wt%에서 가장 높은 강도를 나타내었으며, 석탄의 종류에 따라 가장 높은 강도를 갖는 수분 함량의 차이가 있었다. 석탄의 입도는 적을수록 높은 강도를 나타내며 입도가 증가할수록 수렴하는 경향을 나타내었다. 성형압력이 높아질수록 성형 강도가 높게 나타났으나, 약 300 kN 이상에서는 크게 차이를 보이지 않았다. 보관일수별로는 약 일주일 동안 강도가 급격히 감소한 후 수렴하는 경향을 보였다. 이상의 결과는 저등급석탄의 산지에서 고품위화시킨 석탄을 국내 반입하는 경우에 대한 성형석탄 제조 및 관리의 지침으로 활용될 수 있다.

Study on Emission Control for Precursors Causing Acid Rain (VI) : Suitability of Aquatic Plant Biomass as a Co-combustion Material with Coal

  • Hauazawa, Atsushi;Gao, Shidong;Sakamoto, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • 제2권2호
    • /
    • pp.102-108
    • /
    • 2008
  • In China, energy and environmental problems are becoming serious owing to rapid economic development. Coal is the most problematic energy source because it causes indoor and outdoor air pollution, acid rain, and global warming. One type of clean coal technology that has been developed is the coal-biomass briquette (or bio-briquette, BB) technique. BBs, which are produced from pulverized coal, biomass (typically, agricultural waste), and a sulfur fixation agent (slaked lime, $Ca(OH)_2$) under high pressure without any binder, have a high sulfur-fixation effect. In addition, BB combustion ash, that is, the waste material, can be used as a neutralization agent for acidic soil because of its high alkalinity, which originates from the added slaked lime. In this study, we evaluated the suitability of alternative biomass sources, namely, aquatic plants, as a BB constituent from the perspective of their use as a source of energy. We selected three types of aquatic plants for use in BB preparation and compared the fuel, handling, and environmental characteristics of the new BBs with those of conventional BBs. Our results showed that air-dried aquatic plants had a higher calorific value, which was in proportion to their carbon content, than agricultural waste biomass; the compressive strength of the new BBs, which depends on the lignin content of the biomass, was high enough to bear long-range intracontinental transport in China; and the new BBs had the same emission control capacity as the conventional BBs.

Stabilization Characteristics of Upgraded Coal using Palm Acid Oil

  • Rifella, Archi;Chun, Dong Hyuk;Kim, Sang Do;Lee, Sihyun;Rhee, Youngwoo
    • 청정기술
    • /
    • 제22권4호
    • /
    • pp.299-307
    • /
    • 2016
  • These days, coal is one of the most important energy resources used for transportation, industry, and electricity. There are two types of coal: high-rank and low-rank. Low-rank coal has a low calorific value and contains large amounts of useless moisture. The quality of low-rank coal can be increased by simple drying technology and it needs to be stabilized by hydrocarbons (e.g. palm acid oil, PAO) to prevent spontaneous combustion and moisture re-adsorption. Spontaneous combustion becomes a major problem during coal mining, storage, and transportation. It can involve the loss of life, property, and economic value; reduce the quality of the coal; and increase greenhouse gas emissions. Besides spontaneous combustion, moisture re-adsorption also leads to a decrease in quality of the coal due to its lower heating value. In this work, PAO was used for additive to stabilize the upgraded coal. The objectives of the experiments were to determine the stabilization characteristic of coal by analyzing the behavior of upgraded coal by drying and PAO addition regarding crossing-point temperature of coal, the moisture behavior of briquette coal, and thermal decomposition behavior of coal.

대구 안심연료단지 환경오염물질 노출 평가(III) - 원소 탄소, 결정형 실리카 및 안정동위원소비를 이용한 오염원 기여율 및 분포특성 - (Exposure Assessments of Environmental Contaminants in Ansim Briquette Fuel Complex, Daegu(III) - Contribution and distribution characteristics of air pollutants according to elemental carbon, crystalline silica, and stable isotope ratio -)

  • 정종현;피영규;손병현;배혜정;양원호;김지영;김근배;최종우;박성준;이관;임현술
    • 한국산업보건학회지
    • /
    • 제25권3호
    • /
    • pp.392-404
    • /
    • 2015
  • Objectives: This study measured and analyzed the concentrations of crystalline silica, elemental carbon and the contribution ratio of pollutants which influence environmental and respiratory disease around the Ansim Briquette Fuel Complex in Daegu, Korea. Methods: We analyzed the crystalline silica and elemental carbon in the air according to FTIR(Fourier Transform Infrared Spectroscopy) and NIOSH(National Institute of Occupation Safety and Health) method 5040, respectively. In addition, lead stable isotopes, and carbon and nitrogen stable isotopes were analyzed using MC-ICP/MS(Multi Collector-Inductively Coupled Plasma/Mass Spectrometer), and IRMS(Isotope Ratio Mass Spectrometer), respectively. Results: The concentration of crystalline silica in the direct exposure area around the Ansim Briquette Fuel Complex was found to be $0.0014{\pm}0.0005mg/Sm^3$, but not to exceed the exposure standards of the ACGIH(American Conference of Governmental Industrial Hygienists). In the case of the autumn, the direct exposure area was found to show a level 2.5 times higher than the reference area, and on the whole, the direct exposure area was found to have a level 1.4 times higher than the reference area. The concentration of elemental carbon in the direct exposure area and in the reference area were found to be $0.0014{\pm}0.0006mg/Sm^3$, and $0.0006{\pm}0.0003mg/Sm^3$, respectively. This study confirmed the contribution ratio of coal raw materials to residentially deposited dusts in the area within 500 meters from the Ansim Briquette Fuel Complex and the surrounding area with a stable isotope ratio of 24.0%(0.7-62.7%) on average in the case of carbon and nitrogen, and 33.9%(26.6-54.1%) on average in the case of lead stable isotopes. Conclusions: This study was able to confirm correlations with coal raw materials used by the Ansim Briquette Fuel Complex and the surrounding area. The concentration of some pollutants, crystalline silica, and elemental carbon emitted to the direct-influence area around the Ansim Briquette Fuel Complex were relatively higher than in the reference area. Therefore, we need to impose continuous and substantive reduction countermeasures in the future to prevent particulate matter and coal raw materials in the study area. It is time for the local government and authorities to prepare active administrative methods such as the relocation of Ansim Briquette Fuel Complex.