• 제목/요약/키워드: Coagulation/Sedimentation

검색결과 116건 처리시간 0.019초

응집침전공정에서 수온, 응집제 종류, 전염소 주입에 따른 크립토스포리 디움과 지아디아 제거 효율 변화에 관한 연구 (The Effects of Temperature, Coagulants, and Pre-chlorination on the Removal of Cryptosporidium and Giardia by Coagulation Process)

  • 박상정;정영희;정현미
    • 상하수도학회지
    • /
    • 제21권5호
    • /
    • pp.531-538
    • /
    • 2007
  • The effects of temperature, coagulants and pre-chlorination on the removal of turbidity and pathogenic protozoa by coagulation process were investigated using jar test of lab scale. In room temperature ($25^{\circ}C$), protozoa were removed over 1.0log at the proper concentration range of coagulants, and up to over 2log at the optimal concentration of coagulants. Considering the 1.5log target removal for Giardiain the processes of coagulation, sedimentation, and filtration, this results implies that the target could be satisfied. However, the removal of protozoa and turbidity was reduced, and optimal PAC concentration was narrowed in low turbidity and cold temperature ($5^{\circ}C$). These results suggest that the drop of coagulation efficiency may be occurred in winter if the conditions are not optimized. Despite the effect of water temperature, the relation of turbidity and protozoa removal appeared to be good. The various kinds of coagulants did not significantly affected for removals of turbidity and protozoa when the concentrations of $Al_2O_3$ were considered. Prechlorination did not increase or decrease the removal of turbidity and protozoa in optimum condition at room temperature, pH 7, 15mg/L of PAC concentration.

에폭시수지 생산 공정에서 발생되는 brine 폐수의 전처리를 위한 응집 및 침전 반응의 최적화 연구 (A Study on The Optimization of Pre-treatment for the Brine Wastewater from the Epoxy-resin Process by the Coagulation and Sedimentation Reactions)

  • 조욱상;이은영;강성욱;이장수;진수익
    • 청정기술
    • /
    • 제11권2호
    • /
    • pp.57-67
    • /
    • 2005
  • 에폭시 수지는 ECH(Epichlorohydrin)와 BPA(Bisphenol-A)를 원료로 가성소다 존재 하에 탈수응축 반응을 통해 생성되며 반응 부산물로 소금물이 폐수로 발생되는데 이를 Brine이라 부르며 글리시돌과 같은 에멀젼 상태의 ECH 유도체와 수지성 폴리머를 함유하는 알카리성 폐수이다. 이러한 폐수는 폐수처리 과정에서 반응기 내부와 배관 내벽에 폴리머 입자가 침적 및 응고되어 plugging을 일으키는 등 전체적으로 후처리 공정에서 fouling 현상이 발생되고 있는데 이는 미생물의 분해 활성도를 급격히 떨어뜨려 폐수처리 효율이 낮아지는 문제점을 야기 시키고 있다. 본 연구에서는 무기 응집제와 유기 고분자 응집제를 이용하여 에폭시 수지 생산 공정에서 발생하는 brine 폐수에 존재하는 ECH 유도체와 수지성 폴리머를 반고상 슬러지 형태로 응집 및 침전시킴으로써 fouling 현상을 일으키는 요인을 제거하고자 최적의 응집반응 조건을 도출하였고 경제성 분석 등 이를 실제 공정에 적용할 수 있는 방안을 제시하고자 하였다.

  • PDF

정수처리시설에서 막공정 도입시 침전공정생략 가능성에 관한 연구 (A Study on Possibility of Sedimentation Basin Omission After Installed Membrane System in Drinking Water Treatment)

  • 김형선;조춘구;홍성호;김성진;이길숙
    • 상하수도학회지
    • /
    • 제20권3호
    • /
    • pp.403-410
    • /
    • 2006
  • The objective of this study was to evaluate the possibility of sedimentation basin omission when installed hybrid membrane filtration process in the field plant with the capacity of $500m^3/day$ for 11 months in the "G", water purification plant in Seoul. In order to evaluate the possibility of the sedimentation basin omission, we measured the change of DOC by coagulant dosage. Dosage of PAC(power activated carbon) 4mg/L and coagulant($AI_2O_3$ 10%) 1.67mg/L were compatible to meet the water quality. Also according to the experiment without settlement process, optimization G values were determined to be 300/s, 64/s, and 32/s at the mixing tank, the first flocculator and the second flocculator, respectively. The test was performed under the conditions PAC-coagulation-no settlement-MF. As a result, a dosage of 4.0mg/L as PAC and 0.86 to 1.22mg/L as $Al_2O_3$(10%) in the condition of flux of 62.5LMH were determined to keep TMP value less than $1.0kg_f/cm^2$.

Effect of microbial biopolymers on the sedimentation behavior of kaolinite

  • Yeong-Man Kwon;Seok-Jun Kang;Gye-Chun Cho;Ilhan Chang
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.121-131
    • /
    • 2023
  • Clay sedimentation has been widely analyzed for its application in a variety of geotechnical constructions such as mine tailing, artificial islands, dredging, and reclamation. Chemical flocculants such as aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), and ferric sulfate (Fe(SO4)3), have been adopted to accelerate the settling behaviors of clays. As an alternative clay flocculant with natural origin, this study investigated the settling of xanthan gum-treated kaolinite suspension in deionized water. The sedimentation of kaolinite in solutions of xanthan gum biopolymer (0%, 0.1%, 0.5%, 1.0%, and 2.0% in a clay mass) was measured until the sediment height was stabilized. Kaolinite was aggregated by xanthan gum via a direct electrical interaction between the negatively charged xanthan gum molecules and positively charged edge surface and via hydrogen bonding with kaolinite particles. The results revealed that the xanthan gum initially bound kaolinite aggregates, thereby forming larger floc sizes. Owing to their greater floc size, the aggregated kaolinite flocs induced by xanthan gum settled faster than the untreated kaolinite. Additionally, X-ray computed tomography images collected at various depths from the bottom demonstrated that the xanthan gum-induced aggregation resulted in denser sediment deposition. The findings of this study could inspire further efforts to accelerate the settling of kaolinite clays by adding xanthan gum.

전산화 공정을 이용한 조류제거 (The Removal of Algae by Pre-oxidation)

  • 손희종;정철우;배상대;최영익;강임석
    • 한국환경과학회지
    • /
    • 제18권3호
    • /
    • pp.289-298
    • /
    • 2009
  • The blue-green algae which caused odor problem in the tap water are difficult to precipitate in sedimentation basin and clogged the filter void rapidly. The studies of this paper were not only oxidation, coagulation and sedimentation processes for effectively removing blue-green algae but yellow clay and polyamine for verification as coagulants aids. The results of this research are summarized as follows: Higher ozone dose(C) and longer contact time(T) were needed for a high degree of removing blue-green algae efficiency. the removal rate of blue-green algae was proportional to the $C\times T$ value. The removal percent of chlorophyll-a by sedimentation and filter without pre-ozonation was about 75% but 1 mg/L pre-ozonation could increase the removal percent of chlorophyll-a to 99% and more pre-ozonation could remove completely. Though the removal efficiency of turbidity could increased by high dose of chlorination, the dissolved organic carbon was increased. More chlorine dose from 4 to 10 mg/L dissolved organic carbon was decreased. Using yellow clay as coagulant aids increased density of floc so the settling velocity of floc become rising but polyamine could not increase settling velocity of floc though it could formated large floc.

Chintin, Chitosan, Cellulose 및 혼합 Beads의 중금속 이온 흡착특성에 관한 연구 (Study on the adsorption of Heavy Metals by Chitin, Chitosan, Cellulose and its Composite Beads)

  • 전수진;유병태
    • 환경위생공학
    • /
    • 제10권2호
    • /
    • pp.1-12
    • /
    • 1995
  • Under accelerated industrial developments environment pollution comes out to be very stirious. Especially the ions of heavy metal from wastewater, even if they are minimal, accumulated in ecology circle and do finally injury to human health. The general process for removal of heavy metals include coagulation and following sedimentation, ion -exchange and active carbon adsorption and sedimentation that applicate in popular, needs the expense of coagulant the additional treatment of sludge on the general process of coagulation and sedimentation. It is also a serious problem that the second pollution caused by coagulant. However chelating adsorption that uses natural chelating high- molecular compound has not pollution problem Among chelating high- molecules, the diminishing chitin that contained in crustaceans as crawfish and crab in our country with affluent water resources are easy to get. So it is advantageous to use this ubiquitous material for removing heavy metals because we could reuse natural resource. In this research, the author tested the effectiveness of the adsorption and removal of heavy metal ions by chitin and its derivatives. Chitin and cellulose became beads and used as flocculant, in this test. The results are as follows . First, bead showed higher removal ratio than powder in the comparative test on adsorbents such as chitin, chitosan and cellulose. Secondly, in the variety test by the kinds of adsorbent and time. chitosan bead and cellulose bead that showed the highest removal ratio. One hour need to remove the ions of heavy metal. Thirdly, the results of the adsorption degree test by pH revealed high removal ratio adsorption of chitin, cellulose and chitosan bead in alkalin condition but chitosan bead in acidic condition.

  • PDF

정수처리공정에서 bisphenol-A의 제거에 관한 연구 (Bisphenol-A Removal in Conventional Water Treatment Systems)

  • 김혜리;이윤진;박선구;남상호
    • 한국환경보건학회지
    • /
    • 제30권1호
    • /
    • pp.59-64
    • /
    • 2004
  • This study was carried out to investigate influencing factors of bisphenol A(BPA) removal characteristic in conventional water treatment systems to be connected with coagulation, sedimentation, filtration and disinfection. The result are summarized as follows; In BPA removal, optimal doses of PAC, alum, ferric chloride were 7.5 mg Al/L, 10.0 mg AI/L, 15.0 mg Fek. PAC was most effective coagulant to remove BPA. In coagulation process, BPA removal efficiency were increased about 2% by adjusting pH of raw water as 6. At temperature rise 1$0^{\circ}C$, BPA removal efficiency were increased 0.94%. but BPA removal efficiency in sand filtration process were under 1 %ie, so that BPA was almost not removed. At free chlorine dose 1, 2 mg/L, the reaction rate constant k in the BPA removal have been calculated to be 0.397, 0.953 min$^{-1}$ . At free chlorine dose 1, 2 mg/1-, degradation reaction of BPA was completed during 10 min and BFA removal efficiencies were 97.66, 99.99% at this time.

Application of magnetic activated sludge process for a milking parlor wastewater treatment with nitrogen and phosphorus recovery

  • Onodera, Toshihito;Sakai, Yasuzo;Kashiwazaki, Masaru;Ihara, Ikko;Lal, Saha Mihir
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권3호
    • /
    • pp.20-25
    • /
    • 2021
  • Milking parlor wastewater contains high concentration suspended solid (SS), nitrogen, and/or phosphate as well as organic compounds. A new biological wastewater process by magnetic separation, magnetic activated sludge (MAS) process, was applied to milking parlor wastewater treatment process. A three step wastewater treatment process of coagulation sedimentation / ammonia stripping (C/S), magnetic activated sludge process and contact oxidation (CO) was proposed for removal of these pollutants. First step, C/S process recovered 96% TN and 96% PO43--P as resource for fertilizer from the wastewater. 81% biochemical oxygen demand (BOD) in wastewater was removed after MAS process. As a results, all pollutant concentrations satisfied Japanese effluent standards. Most of residual BOD and SS were removed by the CO process. It was estimated that the proposed process could reduce the process space to 1/7.

제주도 매립장 침출수 중 유기물의 효율적 처리를 위한 광촉매 분해 반응의 응용 (Application of Photocatalytic Degradation for Efficient Treatment of Organic Matter in Landfill Leachate in Jeju Island)

  • 이창한;이택관;조은일;감상규
    • 한국환경과학회지
    • /
    • 제31권8호
    • /
    • pp.677-689
    • /
    • 2022
  • In order to photocatalytically treat organic matter (CODCr) and chromaticity effectively, chemical coagulation and sedimentation processes were employed as a pretreatment of the leachate produced from landfill in Jeju Island. This was performed using FeCl3·6H2O as a coagulant. For the treated leachate, UV/TiO2 and UV/TiO2/H2O2 systems were investigated, using 4 types of UV lamps, including an ozone lamp (24 W), TiO2 as a photocatalyst, and/or H2O2 as an initiator or inhibitor for photocatalytic degradation. In the chemical coagulation and sedimentation process using FeCl3·6H2O, optimum removal was achieved with an initial pH of 6, and a coagulant dosage of 2.0 g/L, culminating in the removal of 40% CODCr and 81% chromaticity. For the UV/TiO2 system utilizing an ozone lamp and 3 g/L of TiO2, the optimum condition was obtained at pH 5. However, the treated CODCr and chromaticity did not meet the emission standards (CODCr: 400 mg/L, chromaticity: 200 degrees) in a clean area. However, for a UV/TiO2/H2O2 system using 1.54 g/L of H2O2 in addition to the above optimum UV/TiO2 system, the results were 395 mg/L and 160 degrees, respectively, which were within the emission standard limits. The effect of the UV lamp on the removal of CODCr, and chromaticity of the leachate decreased in the order of ozone (24 W) lamp > 254 nm (24 W) lamp > ozone (14 W) lamp > 254 nm (14 W) lamp. Only CODCr and chromaticity treated with the ozone (24 W) lamp met the emission standards.

염소 및 오존소독시 정수처리공정별 소독부산물 발생 변화 (DBPs Variation by Chlorination and Preozonation in Drinking Water)

  • 김준성;최용욱;정용
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.676-681
    • /
    • 2005
  • This study was researched for disinfection by-products (DBPs) by preozonation, prechlorination and/or postchlorination. DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), halonitriles, and aldehydes were analyzed by the treatment steps of prechlorination, preozonation, sedimentation, filtration, and postchlorination comparatively. THMs were detected as $52.20{\mu}g/L$ after prechlorination and decreased during sedimentation and filtration process. The HAAs and aldehydes increased more during preozonaiton than prechlorination. However, chlorinated DBPs and aldehydes increased more by postchlorination. Chlorinated DBPs formed by preozonation increased 26% more than the chlorination process. If aldehydes were included in the total DBPs, DBPs increased up to 39% by preozonation. Preozonation could increase the removal efficiency of organic carbon during the coagulation and sedimentation processes. Ozonation might produce aldehydes that are not permitted for drinking water regulations. Also, DBPs were produced by preozonation than by chlorination. These results would bring a need for alternative disinfection studies to decrease DBPs.