• 제목/요약/키워드: CoMSIA analysis

검색결과 71건 처리시간 0.021초

Docking, CoMFA and CoMSIA Studies of a Series of N-Benzoylated Phenoxazines and Phenothiazines Derivatives as Antiproliferative Agents

  • Ghasemi, Jahan B.;Aghaee, Elham;Jabbari, Ali
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.899-906
    • /
    • 2013
  • Using generated conformations from docking analysis by Gold algorithm, some 3D-QSAR models; CoMFA and CoMSIA have been created on 39 N-benzoylated phenoxazines and phenothiazines, including their S-oxidized analogues. These molecules inhibit the polymerization of tubulin into microtubules and thus they have been studied for the development of antitumor drugs. Training set for the CoMFA and CoMSIA models using 30 docked conformations gives $q^2$ Leave one out (LOO) values of 0.756 and 0.617, and $r^2$ ncv values of 0.988 and 0.956, respectively. The ability of prediction and robustness of the models were evaluated by test set, cross validation (leave-one-out and leave-ten-out), bootstrapping, and progressive scrambling approaches. The all-orientation search (AOS) was used to achieve the best orientation to minimize the effect of initial orientation of the structures. The docking results confirmed CoMFA and CoMSIA contour maps. The docking and 3D-QSAR studies were thoroughly interpreted and discussed and confirmed the experimental $pIC_{50}$ values.

고추역병균에 대한 2-N-benzyl-5-Phenoxy-3-isothiazolone 유도체의 살균활성에 관한 비교분자 유사성 지수분석(CoMSIA)과 홀로그램 구조-활성 관계(HQSAR) (Comparative molecular similarity indices analyses (CoMSIA) and hologram quantitative structure activity relationship (HQSAR) on the fungicial activity of 2-N-benzyl-5-phenoxy-3-isothiazolone derivatives against phytophthora blight fungus)

  • 성낙도;김기현
    • 농약과학회지
    • /
    • 제6권3호
    • /
    • pp.209-217
    • /
    • 2002
  • Metalaxyl 살균제 저항성(RPC)과 감수성(SPC) 고추역병균주(Phytaphthora capsici)들에 대한 2-N-benzyl-5-phenoxy-3-isothiazolone 유도체들의 살균활성을 비교분자 유사성 지수분석(CoMSIA)과 홀로그램 구조-활성 관계(HQSAR) 방법으로 분석하였다. 두 균주의 살균활성에 대한 PLS 계산결과, 교차 확인값($q^2$)과 Pearson 상관계수($r^2$) (CoMSIA: RPC; $q^2=0.675,\;r^2=0.942$, SPC; $q^2=0.350,\;r^2=0.876$ 및 HQSAR: RPC; $q^2=0.519,\;r^2=0.869$, SPC; $q^2=0.483,\;r^2=0.990$)를 비교한 바, 두 방법 모두 양호한 분석 결과를 나타내었다. 그리고 CoMSIA 등고도로부터 특히, RPC에 대한 선택적인 살균활성 요소는 phenoxy-기의 meta, para(C1-C6) 위치에 소수성이 작고 입체적으로 크지 않은 H-결합 받게가 치환 될 경우이었으며 CoMSIA 보다는 HQSAR 방법이 높은 예측성을 나타내었다.

정량적인 구조-활성상관 (QSAR) 기법에 의한 새로운 농약의 개발. III. 3D QSAR 기법들과 컴퓨터를 이용한 분자설계(CAMD) (Development of new agrochemicals by quantitative structure-activity relationship (QSAR) methodology. III. 3D QSAR methodologies and computer-assisted molecular design (CAMD))

  • 성낙도
    • 농약과학회지
    • /
    • 제7권1호
    • /
    • pp.1-11
    • /
    • 2003
  • 새로운 농약을 탐색하고 개발하는데 있어서 고효율 유기함성 (HTOS) 기술과 고효율 검색 (HTS) 기술 등의 발전과 더불어 컴퓨터 화학을 이용한 분자설계 (CAMD) 방법으로 보편화되고 있는 비교 분자장 분석(CoMFA)과 비교 분자 유사성 지수분석(CoMSIA) 등, 3D QSAR 기법들을 위시하여 분자 홀로그램 구조 - 활성관계 (HQSAR) 분석방법 등, QSAR 기법들을 요약하고 그 활용 사례들을 간략하게 소개하였다.

Comparative Molecular Similarity Index Analysis on 2-(indol-5-yl)thiazolederivatives as Xanthine Oxidase(XO)inhibitors

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제9권3호
    • /
    • pp.190-198
    • /
    • 2016
  • Xanthine Oxidase is an enzyme, which oxidizes hypoxanthine to xanthine, and xanthine to uric acid. It is widely distributed throughout various organsincluding the liver, gut, lung, kidney, heart, brain and plasma. It is involved in gout pathogenesis. In this study, we have performed Comparative Molecular Field Analysis (CoMSIA) on a series of 2-(indol-5-yl) thiazole derivatives as xanthine oxidase (XO) inhibitors to identify the structural variations with their inhibitory activities. Ligand based CoMSIA models were generated based on atom-by-atom matching alignment. In atom-by-atom matching, the bioactive conformation of highly active molecule 11 was generated using systematic search. Compounds were aligned using the bioactive conformation and it is used for model generation. Different CoMSIA models were generated using different alignments and the best model yielded across-validated $q^2$ of 0.698 with five components and non-cross-validated correlation coefficient ($r^2$) of 0.992 with Fisher value as 236.431, and an estimated standard error of 0.068. The predictive ability of the best CoMSIA models was found to be $r{^2}_{pred}$ 0.653. The study revealed the important structural features required for the biological activity of the inhibitors and could provide useful for the designing of novel and potent drugs for the inhibition of Xanthine oxidase.

Molecular Docking, 3D QSAR and Designing of New Quinazolinone Analogues as DHFR Inhibitors

  • Yamini, L.;Kumari, K. Meena;Vijjulatha, M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2433-2442
    • /
    • 2011
  • The three dimensional quantitative structure activity relationship (3D QSAR) models were developed using Comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) and docking studies. The fit of Quinazolinone antifolates inside the active site of modeled bovine dihydrofolate reductase (DHFR) was assessed. Both ligand based (LB) and receptor based (RB) QSAR models were generated, these models showed good internal and external statistical reliability that is evident from the $q^2_{loo}$, $r^2_{ncv}$ and $r^2_{pred}$. The identified key features enabled us to design new Quinazolinone analogues as DHFR inhibitors. This study is a building bridge between docking studies of homology modeled bovine DHFR protein as well as ligand and target based 3D QSAR techniques of CoMFA and CoMSIA approaches.

Docking and Quantitative Structure Activity Relationship studies of Acyl Guanidines as β-Secretase (BACE1) Inhibitor

  • Hwang, Yu Jin;Im, Chaeuk
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.2065-2071
    • /
    • 2014
  • ${\beta}$-Secretase (beta-amyloid converting enzyme 1 [BACE1]) is involved in the first and rate-limiting step of ${\beta}$-amyloid ($A{\beta}$) peptides production, which leads to the pathogenesis of Alzheimer's disease(AD). Therefore, inhibition of BACE1 activity has become an efficient approach for the treatment of AD. Ligand-based and docking-based 3D-quantitative structure-activity relationship (3D-QSAR) studies of acyl guanidine analogues were performed with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to obtain insights for designing novel potent BACE1 inhibitors. We obtained highly reliable and predictive CoMSIA models with a cross-validated $q^2$ value of 0.725 and a predictive coefficient $r{^2}_{pred}$ value of 0.956. CoMSIA contour maps showed the structural requirements for potent activity. 3D-QSAR analysis suggested that an acyl guanidine and an amide group in the $R_6$ substituent would be important moieties for potent activity. Moreover, the introduction of small hydrophobic groups in the phenyl ring and hydrogen bond donor groups in 3,5-dichlorophenyl ring could increase biological activity.

3D-QSAR Studies of Tetraoxanes Derivatives as Antimalarial Agents Using CoMFA and CoMSIA Approaches

  • Liang, Taigang;Ren, Luhui;Li, Qingshan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1823-1828
    • /
    • 2013
  • Tetraoxanes (1,2,4,5-tetraoxanes) have been reported to exhibit potent antimalarial activity. In the present study, the three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on a series of tetraoxanes derivatives using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. The best predictive CoMFA model with atom fit alignment resulted in cross-validated coefficient ($q^2$) value of 0.719, non-cross-validated coefficient ($r^2$) value of 0.855 with standard error of estimate (SEE) 0.335. Similarly, the best predictive CoMSIA model was derived with $q^2$ of 0.739, $r^2$ of 0.847 and SEE of 0.344. The generated models were externally validated using test sets. The final QSAR models as well as the information gathered from 3D contour maps should be useful for the design of novel tetraoxanes having improved antimalarial activity.

Cytotoxic Activity and Three-Dimensional Quantitative Structure Activity Relationship of 2-Aryl-1,8-naphthyridin-4-ones

  • Kim, Yong-Jin;Kim, Eun-Ae;Chung, Mi-Lyang;Im, Chae-Uk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권6호
    • /
    • pp.511-516
    • /
    • 2009
  • A series of substituted 2-arylnaphthyridin-4-one analogues, which were previously synthesized in our laboratory, were evaluated for their in vitro cytotoxic activity against human lung cancer A549 and human renal cancer Caki-2 cells using MTT assay. Some compounds (11, 12, and 13) showed stronger cytotoxicity than colchicine against both tumor cell lines, and compound 13 exhibited the most potent activity with $IC_{50}$ values of 2.3 and $13.4\;{\mu}M$, respectively. Three-dimensional quantitative structure activity relationship (3D-QSAR) studies of comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed. Predictive 3D-QSAR models were obtained with $q^2$ values of 0.869 and 0.872 and $r^2_{ncv}$ values of 0.983 and 0.993 for CoMFA and CoMSIA, respectively. These results demonstrate that CoMFA and CoMSIA models could be reliably used in the design of novel cytotoxic agents.

QSAR Studies on the Inhibitory Activity of New Methoxyacrylate Analogues against Magnaporthe grisea (Rice Blast Disease)

  • Song, Young-Seob;Sung, Nack-Do;Yu, Yong-Man;Kim, Bum-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권10호
    • /
    • pp.1513-1520
    • /
    • 2004
  • We investigate a series of synthesized ${\beta}$-methoxyacrylate analogues for their 3D QSAR & HQSAR against Magnaporthe grisea (Rice Blast Disease). We perform the three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) studies, using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) procedure. In addition, we carry out a two-dimensional Quantitative Structure-Activity Relationship (2D-QSAR) study, using the Hologram QSAR (HQSAR). We perform these studies, using 53 compounds as a training set and 10 compounds as a test set. The predictive QSAR models have conventional $r^2$ values of 0.955 at CoMFA, 0.917 at CoMSIA, and 0.910 at HQSAR respectively; similarly, we obtain cross-validated coefficient $q^2$ values of 0.822 at CoMFA, 0.763 at CoMSIA, and 0.816 at HQSAR, respectively. From these studies, the CoMFA model performs better than the CoMSIA model.

3D-QSAR (CoMFA, CoMSIA) study of PPAR-$\gamma$ agonists.

  • Lee, Hye-Sun;Chae, Chong-Hak;Yoo, Sung-Eun;Yi, Kyu-Yang;Park, Kyung-Lae
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.181.3-181.3
    • /
    • 2003
  • Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 60 PPAR-g agonists. Partial Least Squars (PLS) analysis produced good predicted models with $q^2$ value of 0.62 (SDEP=0.33, F value=93.22, $r^2$=0.92) and 0.56 (SDEP=0.47 F value=27.65, $r^2$=0.86), respectivly. The key spatial properties were detected by careful analysis of the isocontour maps.

  • PDF