• Title/Summary/Keyword: CoMSIA모델

Search Result 23, Processing Time 0.018 seconds

3D-QSAR Analyses on the Inhibition Activity of 4-($R_1$)-Benzyl Alcohol and 4-($R_2$)-Phenol Analogues Against Tyrosinase (4-($R_1$)-Benzyl alcohol 및 4-($R_2$)-Phenol 유도체들의 Tyrosinase 활성 저해에 대한 3D-QSAR 분석)

  • Kim, Sang-Jin;Lee, Myoung-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.4
    • /
    • pp.271-276
    • /
    • 2009
  • The 3-dimensional quantitative structure-activity relationships (3D-QSARs) models between the substituents with changing groups ($R_1$ & $R_2$) of 4-($R_1$)-benzyl alcohol and 4-($R_2$)-phenol derivatives as substrate molecule and their inhibitory activities against tyrosinase were derived and discussed quantitatively. The optimized CoMSIA 2 model have best predictability and fitness ($r^2\;=\;0.858$ & $q^2\;=\;0.951$). The contour maps of optimized CoMSIA 2 model showed that, the inhibitory activities of the analogues against tyrosinase were expected to increase when hydrophobic favor, negative charge favor, steric disfavor and hydrogen bond donor disfavor groups were substituted at the $R^2$ position. When the positive charge and the hydrogen bond donor favor groups were substituted at the $R_1$ position, it is predicted that the substituents will be able to increase the inhibitory activity. However, hydrogen bond acceptor did not affect inhibitory activities of tyrosinase.

CoMFA Analyses on the Fungicidal Activity with N-phenylbenzensulfonamide Analogues against Gray Mold (Botrytis cinerea) (잿빛곰팡이균(Botrytis cinerea)에 대한 N-phenylbenzenesulfonamide 유도체들의 살균활성에 관한 CoMFA 분석)

  • Hwang, Tae-Yeon;Kang, Kyu-Young;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • The comparative molecular field analysis (CoMFA) for the fungicidal activity with N-phenylbenzenesulfonamide analogues (1-45) against gray mold (Botriyts cinerea) were studied quantitatively. The statistical values of CoMFA models had much better predictability and fitness than those of comparative molecular similarity indices analysis (CoMSIA) models. The statistical values of the optimized CoMFA I model were predictablity, $r^2_{cv.}(or\;q^2)=0.457$ and correlation coefficient, $r^2_{ncv.}=0.959$, and their fungicidal activity was dependent on the steric field (52%) and electrostatic field (35.6%) of the substrate molecules. And also, it was found that the optimized CoMFA I model with the sensitivity to perturbation ($d_q^{2'}/dr^2_{yy'}=0.898$) and prediction ($q^2=0.346$ & SDEP=0.614) produced by a progressive scrambling analysis was not dependent on chance correlation. From the results of graphical analyses on the contour maps with the optimized CoMFA I model, it is expected that the $R_3$ and $R_4$-substituents on the N-phenyl ring as steric favor group and para-substituents ($R_1$) on the S-phenyl ring as steric disfavor group will contribute to the fungicidal activity. Therefore, the optimized CoMFA I model should be applicable to the prediction of the fungicidal activities against gray mold.

The Search of Pig Pheromonal Odorants for Biostimulation Control System Technologies: Prediction of Pig Pheromonal Tetrahydrofuran-2-yl Family Compounds by Means of Ligand Based Approach (생물학적 자극 통제 수단으로 활용하기 위한 돼지 페로몬성 냄새 물질의 탐색: Ligand Based Approach에 의한 돼지 페로몬성 Tetrahydrofuran-2-yl 계 화합물의 예측)

  • Soung, Min-Gyu;Cho, Yun-Gi;Park, Chang-Sik;Sung, Nack-Do
    • Reproductive and Developmental Biology
    • /
    • v.32 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • To search a new porcine pheromonal odorant, the models of four type (2D-QSAR, HQSAR, CoMFA & CoMSlA) were derived from quantitative structure-activity relationship (QSAR) between tetrahydrofuran-2-yl family compounds and their observed binding affinity constants (Obs.p$[Od]_{50}$). The optimized CoMFA model (predictability; $r^{2}_{cv.}(q^2)$=0.886 & correlation coefficient: $r^{2}_{ncv.}$=0.984) from ligand based approaches was confirmed as the best model among them. The $N^{1}$-allyl-$N^{2}$-(tetrahydrofuran-2-yl)methyl)oxalamide (P1), 2-(4-trimethylammoniummethylcyclohexyloxy)tetrahydrofurane (P5) and 2-(3-trimethylammoniummethylcyclohexyloxy)tetrahydrofurane (P6) molecules predicted as porcine pheromonal odorant by the CoMFA model were showed relatively high binding affinity constant values (Pred.p$[Od]_{50}=8{\sim}10$) and very lower toxicity values against some sorts of toxicity.