• 제목/요약/키워드: Co2 decomposition

Search Result 585, Processing Time 0.033 seconds

Characteristics of Biodegradable Films and Their Effects on Soybean Growth

  • Ye Geon Kim;Hyo Jin Lee;Do Jin Lee;Yong In Kuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.50-50
    • /
    • 2022
  • Recently, the use of mulching film has increased in soybean cultivation. Polyethylene (PE) films and biodegradable films (BF) have the advantages of improving soil moisture retention, geothermal maintenance, and CO2 maintenance as well providing weed control. Furthermore, BFs are a material that can compensate for the shortcomings of PE because it has the ability to decompose naturally by soil microorganisms, sunlight, and geothermal heat. Many researches have been carrying out studies regarding the development of BFs for these very reasons. This study was conducted better understand which films are optimal for soybean cultivation after evaluations of soybean growth and film characteristics of various BFs. BFs Farmsbio (Farm Hannong), Heulgro Film (Sejin Bio), Vonto Film (Eco-Hansung), two unnamed biodegradable films (Seojin Bio and Taesung), and a PE film were used in this study. For the control plots, no mulching was used. Experimental fields were fertilized according to conventional cultivation methods, tilled, and then covered with either BFs or PE films. After 1 week, soybean (cv. Daechan) seeds were seeded. Germination rate and plant height were measured at weekly intervals after seeding. In addition, pH, EC, and decomposition and light transmittance levels of films were measured during the experimental period. Daily average temperatures and relative humidity in soils was measured during the experimental period. There was no significant difference in germination rates and plant height in both crops grown with BFs and PE films, but crops grown in the control plot had significantly lower germination rates and growth. Soil pH was not significantly different regardless of treatments (BF, PE, and non-mulching) at 14, 28, and 42 days after seeding. In general, the EC contents in the control plots was lower than in crops grown using BFs and PE films. With the exception of some BFs, light transmittance and decomposition levels of films did not, in general, increase up to 70 days after soybean seeding. Since this study is ongoing, we are continually investigating these parameters. The average daily moisture in soil was higher in crops grown with BFs and PE films than in the control plot. However, the daily average soil temperature was not consistent regardless of treatments. Therefore, the BFs used in this study can be used without negative impacts on soybean growth.

  • PDF

A Design Approach to $CrO_x/TiO_2$-based Catalysts for Gas-phase TCE Oxidation (기상 TCE 제거반응용 $CrO_x/TiO_2$계 복합 산화물 촉매 디자인)

  • Yang, Won-Ho;Kim, Moon-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.368-375
    • /
    • 2006
  • Single and complex metal oxide catalysts supported onto a commercial DT51D $TiO_2$ have been investigated for gas-phase TCE oxidation in a continuous flow type fixed-bed reaction system to develop a better design approach to catalysts for this reaction. Among the $TiO_2$-supported single metal oxides used, i.e., $CrO_x,\;FeO_x,\;MnO_x,\;LaO_x,\;CoO_x,\;NiO_x,\;CeO_x\;and\;CuO_x$, with the respective metal contents of 5 wt.%, the $CrO_x/TiO_2$ catalyst was shown to be most active for the oxidative TCE decomposition, depending significantly on amounts of $CrO_x\;on\;TiO_2$. The use of high $CrO_x$ loadings greater than 10 wt.% caused lower activity in the catalytic TCE oxidation, which is probably due to production of $Cr_2O_3$ crystallites on the surface of $TiO_2$. $CrO_x/TiO_2$-supported $CrO_x$-based bimetallic oxide catalysts were of particular interest in removal efficiency for this TCE oxidation reaction at reaction temperatures above $200^{\circ}C$, compared to that obtained with $CrO_x$-free complex metal oxides and a 10 wt.% $CrO_x/TiO_2$ catalyst. Catalytic activity of 5 wt.% $CrO_x-5$ wt.% $LaO_x$ in the removal reaction was similar to or slightly higher than that acquired for the $CrO_x$-only catalyst. Similar observation was revealed for 5 wt.% $CrO_x$-based bimetallic oxides consisting of either 5 wt.% $MnO_x,\;CoO_x,\;NiO_x\;or\;FeO_x$. These results represent that such $CrO_x$-based bimetallic systems for the catalytic TCE oxidation on significantly minimize the usage of $CrO_x$ that is well known to be one of very toxic heavy metals, and offer a very useful technique to design new type catalysts for reducing chlorinated volatile organic substances.

Electro chemical characteristics of $(MnX)O_2$ electrode prepared by thermal decomposition method (열분해법으로 제조된 $(MnX)O_2$ 전극의 전기화학적 특성)

  • Kim, Hyun-Sik;Lee, Hae-Yon;Huh, Jeoung-Sub;Kim, Jong-Ryung;Lee, Dong-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.348-351
    • /
    • 2003
  • 산소 과전압이 낮은 $MnO_2$를 촉매로 사용하여 반도체 산화물계의 산소선택성 전극을 제조하고 산화물 coating층의 미세구조와 전기화학적 특성을 분석하였다. Ti 기판에 열분해 법을 이용하여 $MnO_2$ 피막을 형성하였고, 또한 PVDF : $MnO_2$의 함량비를 1 : 1에서 1 : 40까지 정량적으로 변화시키고 DMF의 함량을 각각의 고정된 PVDF : $MnO_2$의 함량비에서 변화시켜 Pb전극에 1.5 mm/sec의 속도로 5회 dipping하여 $MnO_2$ 피막층을 형성 하였다. $450^{\circ}C$에서 1시간 열분해하여 약 $1\;{\mu}m$$MnO_2$ 피막층이 형성되었으나 Ti 기판과의 접착력이 약하여 피막자체에 대한 전기화학적 특성을 관찰할 수 없었다. PVDF : DMF = 4 : 96인 경우 pb 전극의 피막층이 얇기 때문에 박리현상이 일어났으며 이는 산화물 용제의 낮은 점도 때문인 것으로 판단된다. 또한 PVDF : DMF = 10 : 90의 경우는 5회 dipping 하여 약 $150\;{\mu}m$의 피막층을 형성하였다. PVDF : $MnO_2$의 함량비가 1:1에서 1:6 까지는 DMF의 함량에 무관하게 전극 특성이 나타나지 않았지만 $MnO_2$의 양이 상대적으로 증가하면 cycle이 증가하더라도 거의 일정한 전류 값을 갖고 $MnO_2$와 PVDF의 비가 20:1 이상의 조성에서는 균일한 CV 특성을 나타냈다. 이는 $MnO_2$가 효과적으로 촉매 작용을 한 것으로 판단되며 anodic polarization에 의한 산소 발생 과전압도 약 1.4V 정도로 감소되었다.동등한 MSIL 코드를 생성하도록 시스템을 컴파일러 기법을 이용하여 모듈별로 구성하였다.적용하였다.n rate compared with conventional face recognition algorithms. 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화가 선조체 영역에서 국한되어 나타나며 그 유의성이 움직임 보정 전에 비하여 낮음을 알 수 있었다. 결론: 뇌활성화 과제 수행시에 동반되는 피험자의 머리 움직임에 의하여 도파민 유리가 과대평가되었으며 이는 이 연구에서 제안한 영상정합을 이용한 움직임 보정기법에 의해서 개선되었다. 답이 없는 문제, 문제 만들기, 일반화가 가능한 문제 등으로 보고, 수학적 창의성 중 특히 확산적 사고에 초점을 맞추어 개방형 문제가 확산적 사고의 요소인 유창성, 독창성, 유연성 등에 각각 어떤 영향을 미치는지 20주의 프로그램을 개발, 진행하여 그 효과를 검증하고자

  • PDF

Importance of Extracellular Enzyme Activities in Northern Peatland Biogeochemistry-Possible Coupling with Trace Gas Emission and DOC Dynamics (북구 이탄습지의 생지화학적 반응에 있어서 체외효소의 중요성-미량기체 발생량 및 용존유기탄소 동태와의 연관성에 대하여)

  • Freeman, Chris;Park, Seok-Soon;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.435-444
    • /
    • 2006
  • A suite of extracellular enzyme activities involved in organic carbon decomposition were determined in three northern peatlands (a bog, a fen, and a swamp) over a 12 month period along with trace gas ($CO_2$ and $N_2O$) flux and DOC dynamics in the wetlands. The activities varied $0.008-0.066\;{\mu}mole\;g^{-1}\;min^{-1}$, $0.003-0.021\;{\mu}mole\;g^{-1}\;min^{-1}$, $0.003-0.016\;{\mu}mole\;g^{-1}\;min^{-1}$, $0.004-0.047\;{\mu}mole\;g^{-1}\;min^{-1}$, for ${\beta}-glucosidase$, cellobiohydrolase, ${\beta}-xylosidase$, and N-acetylglucosaminidase, respectively. In general, the activities were highest in the forested swamp followed by the fen and the bog. When the data from three wetlands are combined, the enzyme activities exhibited significant positive correlations with trace gas emission and available carbon. Further, the average activity of 4 enzymes explained about 20-40% of the variations of trace gas emssion and available carbon. The results indicate that enzymes related to the mineralization of organic carbon may play an important role in trace gas flux and DOC dynamics in northern peatlands.

Copyright Protection for Fire Video Images using an Effective Watermarking Method (효과적인 워터마킹 기법을 사용한 화재 비디오 영상의 저작권 보호)

  • Nguyen, Truc;Kim, Jong-Myon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.579-588
    • /
    • 2013
  • This paper proposes an effective watermarking approach for copyright protection of fire video images. The proposed watermarking approach efficiently utilizes the inherent characteristics of fire data with respect to color and texture by using a gray level co-occurrence matrix (GLCM) and fuzzy c-means (FCM) clustering. GLCM is used to generate a texture feature dataset by computing energy and homogeneity properties for each candidate fire image block. FCM is used to segment color of the fire image and to select fire texture blocks for embedding watermarks. Each selected block is then decomposed into a one-level wavelet structure with four subbands [LL, LH, HL, HH] using a discrete wavelet transform (DWT), and LH subband coefficients with a gain factor are selected for embedding watermark, where the visibility of the image does not affect. Experimental results show that the proposed watermarking approach achieves about 48 dB of high peak-signal-to-noise ratio (PSNR) and 1.6 to 2.0 of low M-singular value decomposition (M-SVD) values. In addition, the proposed approach outperforms conventional image watermarking approach in terms of normalized correlation (NC) values against several image processing attacks including noise addition, filtering, cropping, and JPEG compression.

Reducing Ammonia Emissions and Enhancing Plant Growth through Co-application of Microbes and Methanol in Sewage Sludge Treatment (하수슬러지 처리에서 미생물과 메탄올 적용을 통한 암모니아 배출 감소 및 식물 성장 향상 연구)

  • Jin-Won Kim;Hee-Gun Yang;Hee-Jong Yang;Myeong-Seon Ryu;Gwang-Su Ha;Su-Ji Jeong;Soo-Young Lee;Ji-Won Seo;Do-Youn Jeong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.2
    • /
    • pp.13-24
    • /
    • 2023
  • Sewage sludge has been widely used as an organic fertilizer in agriculture. However, sewage sludge can cause serious malodor problems resulting from the decomposition of organic compounds in anaerobic conditions. The malodor of sewage sludge mainly occurs due to a low carbon to nitrogen ratio (C/N), high moisture, and low temperature, which are ideal conditions for ammonia emissions. Therefore, in this study, we investigated the reduction of the odor-causing ammonia nitrogen (NH3-N) in sewage sludge by co-application of microbes and methanol (MeOH). The physico-chemical properties of the municipal sewage sludge showed that the odor was mainly caused by a higher NH3-N content (2932.2 mg L-1). Supplementation with MeOH (20%) as a carbon source in the sewage sludge significantly reduced the NH3-N up to 34.2% by increasing C/N ratio. Furthermore, the sewage sludge was treated with the NH3-N reducing and plant growth promoting (PGP) bacteria Stenotrophomonas rhizophila SRCM 116907. The treatment with S. rhizophila SRCM 116907 significantly increased the seedling vigor index of Lolium perenne (10.3%) and Chrysanthemum burbankii (42.4%). The findings demonstrate that supplementing sewage sludge with methanol significantly reduces ammonia emissions, thereby mitigating malodor problems. Overall, the study highlights the potential of using a microbial and methanol approach to improve the quality of sewage sludge as an organic fertilizer and promote sustainable agriculture.

Analysis of Shipping Markets Using VAR and VECM Models (VAR과 VECM 모형을 이용한 해운시장 분석)

  • Byoung-Wook Ko
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.69-88
    • /
    • 2023
  • This study analyzes the dynamic characteristics of cargo volume (demand), ship fleet (supply), and freight rate (price) of container, dry bulk, and tanker shipping markets by using the VAR and VECM models. This analysis is expected to enhance the statistical understanding of market dynamics, which is perceived by the actual experiences of market participants. The common statistical patterns, which are all shown in the three shipping markets, are as follows: 1) The Granger-causality test reveals that the past increase of fleet variable induces the present decrease of freight rate variable. 2) The impulse-response analysis shows that cargo shock increases the freight rate but fleet shock decreases the freight rate. 3) Among the three cargo, fleet, and freight rate shocks, the freight rate shock is overwhelmingly largest. 4) The comparison of adjR2 reveals that the fleet variable is most explained by the endogenous variables, i.e., cargo, fleet, and freight rate in each of shipping markets. 5) The estimation of co-integrating vectors shows that the increase of cargo increases the freight rate but the increase of fleet decreases the freight rate. 6) The estimation of adjustment speed demonstrates that the past-period positive deviation from the long-run equilibrium freight rate induces the decrease of present freight rate.

Effect of Pore Structure and Heteroelements on Carbon Dioxide Adsorption of Activated Carbon Prepared from Pig Bone (돼지 뼈로부터 제조된 활성탄소의 기공구조 및 이종원소가 이산화탄소 흡착에 미치는 영향)

  • Seo Gyeong Jeong;Chaehun Lim;Seongjae Myeong;Chung Gi Min;Naeun Ha;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.576-583
    • /
    • 2023
  • This study investigated the possibility of new adsorbent materials made from pig bone-based biomass. To this end, the properties of pig bone-based activated carbon (PAC) prepared from animal biomass were investigated, and its carbon dioxide adsorption performance was examined. KOH was used as the activation agent, and the specific surface area increased with increasing activation temperature, and the adsorption efficiency of carbon dioxide also increased. The sample activated at 800 ℃ exhibited the largest specific surface area of 1208.7 m2/g and the highest CO2 adsorption efficiency of 3.33 mmol/g at 273 K, 1 bar. However, the specific surface area and the CO2 adsorption efficiency decreased at activation temperatures above 900 ℃ due to crystallinity changes and overactivation. On the other hand, when the selectivity was calculated using the ideal adsorption solution theory, PAC-900 samples at 273 K and below 0.8 bar showed the best selectivity. These results suggest that the high selectivity of carbon dioxide/nitrogen adsorption at 273 K is due to the carbon dioxide adsorption capacity of hydroxyapatite formed by the decomposition of carbonate when pig bone is activated at 900 ℃ and its crystallinity.

Development of Analysis Model for Down Scaled Two Phase Catalytic Reactor (초소형 촉매 이상 분해 반응기 해석 모델 개발)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2004
  • Analysis model for the two-phase catalytic reactor is presented. With the progress in development of micro thermofluidic devices, needs fur understanding of the phenomena in two phase reaction in cm scale has been arisen. To investigate thermal and reactive performance of down scaled two phase reactor simple analysis model that is a kind of lumped flow model is proposed. Analysis model presented is based on the experiment on mm scale model reactor. Target experiment is catalytic decomposition of 70wt% hydrogen peroxide with existence of perovskite L $a_{0.8}$S $r_{0.2}$Co $O_3$ catalyst. It is composed of balance equations of mass and energy. Each phase is considered to be a species fur the simplicity. Axial diffusion and transversal distribution of properties are neglected. Two phase catalytic reaction is modeled as successive gasification of liquid lump around catalyst and reaction in gas phase. Heat transfer is modeled by model function ofNu number. Modeled Nu is expressed as Nu=N $u_{0}$ (1+ $a_1$( $a_2$ $T^{-}$ $a_3$)exp( $a_4$ $T^{-1}$)exp( $a_{5}$ z). Transfer coefficients are determined by the comparison of experimental results. With the model, heat transfer characteristics are investigated. Also by the mass transfer coefficient, characteristics in mass transfer is investigated. With the result basic understanding on design and analysis of mm scale two-phase reactive device is obtained. Also it can be further applied to micro scale reactive device fabricated by micromachining.ing..

Corrosion mechanism of zirconia/graphite SEN by molten steel and slag (용강 및 슬래그에 의한 지르코니아/흑연계 침지노즐의 침식기구)

  • Sunwoo, Sik;Kim, Hwan;Lee, Jong-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.226-232
    • /
    • 2000
  • Corrosion mechanisms by molten steel and slag were investigated in the zirconia/graphite composite as a material of submerged entry nozzle (SEN) using for producing high quality steel. Most of corrosions were started by the dissolution of zirconia particles into molten steel and oxidation of graphite, but subsequently three modes of corrosion were observed. Firstly, the penetration of slag into zirconia matrix was induced to the diffusion of stabilizing agent outward cubic zirconia grains, and the destabilization of cubic to fine monoclinic zirconia particles, which is enhanced to the decomposition and dissolution of them into slag. Secondly, molten slag penetrates into large cubic zirconia particles along grain boundary and decomposed them to fine cubic grains, which is also enhanced to the dissolution of zirconia grains into slag. Lastly, reaction between carbon and cubic zirconia was formed porous ZrC and enhanced the dissolution of it into slag.

  • PDF