• Title/Summary/Keyword: Co-pyrolysis

Search Result 256, Processing Time 0.03 seconds

Change of Particle Morphology and Ingredient Phase of WC and WC-Co Nanopowders Fabricated by Chemical Vapor Condensation during Subsequent Heat-Treatment (기상응축법으로 제조한 나노 WC및 WC-Co분말의 후속 열처리에 의한 상 및 협상 변화)

  • 김진천;하국현;김병기
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.124-129
    • /
    • 2004
  • Nanosized WC and WC-Co powders were synthesised by chemical vapor condensation(CVC) process using the pyrolysis of tungsten hexacarbonyl(W(CO)$_6$) and cobalt octacarbonyl(Co$_2$(CO)$_8$). The microstructural changes and phase evolution of the CVC powders during post heat-treatment were studied using the XRD, FE-SEM, TEM, and ICP-MS. CVC powders were consisted of the loosely agglomerated sub-stoichimetric WC$_{1-x}$ and the long-chain Co nanopowders. The sub-stochiometric CVC WC and WC-Co powders were carburized using the mixture gas of CH$_4$-H$_2$ in the temperature range of 730-85$0^{\circ}C$. Carbon content of CVC powder controlled by the gas phase carburization at 85$0^{\circ}C$ was well matched with the theoretical carbon sioichiometry of WC, 6.13 wt%. During the gas phase carburization, the particle size of WC increased from 20 nm to 40 nm and the long chain structure of Co powders disappeared.

An Electrochemical Study on the Carbon Black Conductor Prepared by Plasma Pyrolysis of Methane (메탄 플라즈마 분해에 의해 제조된 카본블랙 도전재의 전기화학적 특성에 대한 연구)

  • Yoon, Se-Rah;Lee, Joong-Kee;Cho, Won-Ihl;Baek, Young-Soon;Ju, Jae-Beck;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.6-12
    • /
    • 2003
  • Plasma carbon black(PB) which prepared by plasma pyrolysis of methane was treated at 800, 1300 and $2100^{\circ}C$ under $2\times10^{-2}$ torr. Four different samples including raw PB were added to $LiCoO_2$, cathode active material of lithium secondary battery, to investigate effects of properties of plasma black as conductors on electrochemical characteristics. Based on our experimental results, PB conductors with low amount of surface functional groups and high electrical conductivity enhanced the cyclability and the initial discharge capacity. However, deterioration of rate capability and cyclability were observed (or the plasma black treated at $2100^{\circ}C$ For the plasma black conductor prepared from plasma pyrolysis, the effects of properties of carbon black on electrochemical characteristics were combined results of changes in electrical conductivity and structural properties such as agglomeration of plasma black. The conductivity of plasma black increased with treatment temperature, while dispersion of plasma black decreased. As a result, the high cyclability of cell was observed at $800^{\circ}C$ of heat treatment temperature.

Effects of Metal Oxide Addition on Co-pyrolysis of PVC and ABS Mixtures (PVC와 ABS 혼합물의 공열분해에 대한 금속산화물의 첨가 효과)

  • Kim, Hee Taik;Choung, Youn Wook;Lee, Hae Pyeong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.296-303
    • /
    • 2005
  • The co-pyrolysis characteristics of polyvinylchloride (PVC) and acrylonitrile butadiene styrene (ABS) mixtures with various mixing ratios and effect of addition of CaO and $Cu_2O$ have been studied using thermogravimetry (TG) and gas chromatograph-mass spectrometry (GC-MS). In an isothermal decomposition conducted at $500^{\circ}C$, the yields of styrene monomers and aromatic compounds increased as the mixing ratio of ABS increased, and the yield of BTX compounds reached its maximum (16.14%) when the mixing ratios of PVC and ABS was 4:1. In an isothermal decomposition added with metal oxides, the maximum yield of liquid product was 73% when CaO [CaO/(PVC+ABS)=0.4] was added and it was 70% when $Cu_2O$ [$Cu_2O$/(PVC+ABS)=0.4] was added, respectively, where HCl contained in the gaseous product was completely removed when added with CaO [CaO/(PVC+ABS)=0.5] and $Cu_2O$ [$Cu_2O$/(PVC+ABS)=1.0]. Therefore, to obtain the highest yield of liquid product it appears to be the reaction condition: the reaction temperature of $500^{\circ}C$ and mixing ratios of CaO and $Cu_2O$ are 0.5 and 1.0, respectively.

Highly Sensitive and Selective Trimethylamine Sensor Using Yolk-shell Structured Mo-doped Co3O4 Spheres

  • Kim, Tae-Hyung;Kim, Ki Beom;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.271-276
    • /
    • 2019
  • Pure and 0.5, 1, 2, 5, and 10 at% of Mo-doped $Co_3O_4$ yolk-shell spheres were synthesized by ultrasonic spray pyrolysis of droplets containing Co nitrate, ammonium molybdate, and sucrose and their gas sensing characteristics to 5 ppm trimethylamine (TMA), ethanol, p-xylene, toluene, ammonia, carbon monoxide, and benzene were measured at $225-325^{\circ}C$. The sensor using pure $Co_3O_4$ yolk-shell spheres showed the highest response to p-xylene and very low response to TMA at $250^{\circ}C$, while the doping of Mo into $Co_3O_4$ tended to increase the overall responses of gas sensors. In particular, the sensor using 5 at% Mo-doped $Co_3O_4$ yolk-shell spheres exhibited the high response to TMA with low cross-responses to other interfering gases. The high response and selectivity of Mo-doped $Co_3O_4$ yolk-shell spheres to TMA are attributed to the electronic sensitization by higher valent Mo doping and acid-base interaction between TMA and Mo components.

Development of Porous Media for Sewage Treatment by Pyrolysis Process of Food Wastes with Loess (음식물 쓰레기 및 황토 혼합물의 열분해를 통한 수질정화용 다공성 담체 개발)

  • Kim, Sang-Bum;Lee, Myong-Hwa;Kim, Yong-Jin;Park, Chul-Hwan;Lee, Jong-Rae;Kim, Gyung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.289-296
    • /
    • 2007
  • Porous media for sewage treatment were developed through a pyrolysis process of food wastes with loess in the study. This work was carried out in two consecutive stages; in the first stage, new porous media were prepared through a high temperature pyrolysis process, and then the resultant media were applied to a simple lab-scale sewage treatment process in the second stage. To determine the optimum operating conditions of pyrolysis and mixing ratio of materials, physical properties such as specific surface area, porosity and compressive strength of final products were analyzed. The removal efficiencies of TOC and COD were measured to evaluate the effectiveness of resultant porous media. As a result of the experiment, we found that the best mixing ratio of food wastes to loess was 1 : 1 at $1,100^{\circ}C$. Average porosity of the developed media was 37.0%, in which pore size ranged from 1 to $20{\mu}m$, showing quite vigorous microbial activation. After immersing the media into a reactor for sewage treatment for eight days, removal efficiencies of TOC and COD were 87.3% and 85.0%, respectively.

Synthesis of porous-structured (Ni,Co)Se2-CNT microsphere and its electrochemical properties as anode for sodium-ion batteries (다공성 구조를 갖는 (Ni,Co)Se2-CNT microsphere의 합성과 소듐 이차전지 음극활물질로서의 전기화학적 특성 연구)

  • Yeong Beom Kim;Gi Dae Park
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.178-184
    • /
    • 2023
  • Transition metal chalcogenides have garnered significant attention as anode materials for sodium-ion batteries due to their high theoretical capacity. Nevertheless, their practical application is impeded by their limited lifespan resulting from substantial volume expansion during cycling and their low electrical conductivity. To tackle these issues, this study devised a solution by synthesizing a nanostructured anode material composed of porous CNT (carbon nanotube) spheres and (Ni,Co)Se2 nanocrystals. By employing spray pyrolysis and subsequent heat treatments, a porous-structured (Ni,Co)Se2-CNT composite microsphere was successfully synthesized, and its electrochemical properties as an anode for sodium-ion batteries were evaluated. The synthesized (Ni,Co)Se2-CNT microsphere possesses a porous structure due to the nanovoids that formed as a result of the decomposition of the polystyrene (PS) nanobeads during spray pyrolysis. This porous structure can effectively accommodate the volume expansion that occurs during repeated cycling, while the CNT scaffold enhances electronic conductivity. Consequently, the (Ni,Co)Se2-CNT anode exhibited an initial discharge capacity of 698 mA h g-1 and maintained a high discharge capacity of 400 mA h g-1 after 100 cycles at a current density of 0.2 A g-1.

Experimental Study on Combustion of Boiler Fuel Made of Light-Oil and Bio-Oil (경유와 바이오오일 혼합연료의 연소에 대한 실험연구)

  • Yang, JeBok;Lee, InGu;Hwang, KyungRan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.201-204
    • /
    • 2012
  • Combustion characteristics of boiler fuels made of bio-oil and light-oil were experimentally investigated. Bio-oil was obtained by fast pyrolysis of woody biomass. Emulsion fuel made by mixing bio-oil (up to 30wt%) with light-oil and surfactant was completely burnt, resulting in the formation of combusted gas containing CO concentration less than 10ppm. Simple mixtures of bio-oil and light-oil with separate delivery lines also gave nice combustion characteristics.

  • PDF

The Gasification & Melting Treatment Technology of Waste (폐기물 열분해 가스화용융 기술)

  • Huh, Il-Sang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.133-138
    • /
    • 2005
  • The worldwide trend of waste treatment technology is rapidly transferring from "incineration system" to "gasification & melting system" which can derive the resources from waste and charge no more environmental burden to nature. And therefore it is necessary to adopt gasification & melting system to prevent the land pollution and to solve the problem of landfill area. Among several thermal waste treatment processes gasification and melting system is the representative process which can transfer waste to resources such as syn-gas, molten slag, metal hydroxide, mixed salt and sulfur through the process of compaction, pyrolysis, gasification and melting.

  • PDF

Pore-Controlled Synthesis of Mesoporous Silica Particles by Spray Pyrolysis from Aqueous Silicic Acid (규산 수용액으로부터 분무열분해법에 의한 기공 특성이 제어된 메조기공의 다공성 실리카 분말 합성)

  • Chang, Han Kwon;Lee, Jin Woo;Oh, Kyoung Joon;Jang, Hee Dong;Kil, Dae Sup;Choi, Jeong Woo
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.89-95
    • /
    • 2012
  • Spherical mesoporous silica particles, of which main pore diameter was 3.8 nm, were successfully prepared by spray pyrolysis from aqueous silicic acid. The effect of precursor concentration, reaction temperature, and the addition of urea and PEG on the particle diameter and pore properties such as pore diameter, total pore volume, and specific surface area were investigated by using FE-SEM, particle size analyzer, and nitrogen absorption-desorption analysis. With an increase of the precursor concentration from 0.2 M to 0.7 M, the average particle diameter, total pore volume, and specific surface area of the porous silica particles increased from 0.56 to $0.96\;{\mu}m$, 0.434 to $0.486\;cm^3/g$, 467.8 to $610.4\;m^2/g$, respectively. Within the temperature range $(600\;^{\circ}C{\sim}800\;^{\circ}C)$, there was no significant difference in the pore diameter, total pore volume, and specific surface area. In addition, the addition of urea as an expansion aid led to slight increases in particle diameter, pore diameter, and specific surface area. However, when the polyethylene glycol (PEG) as an organic template was used, the total pore volume of porous particles increased dramatically.

Preparation of High $J_c$ YBCO Films on LAO by Spray Pyrolysis Process Using Nitrate Precursors (질산염 무기금속 화합물의 분무열분해법에 의한 High-$J_c$ YBCO 박막 제조)

  • Hong, Suk-Kwan;Kim, Jae-Gun;Kim, Ho-Jin;Cho, Han-Woo;Yu, Seok-Koo;Ahn, Jin-Hyun;Joo, Jin-Hoo;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.71-74
    • /
    • 2006
  • High $J_c$ over 1 $MA/cm^2$ YBCO film has been successfully prepared using nitrate precursors by spray pyrolysis method. Aerosol drolpets generated using a concentric spray nozzle were directly sprayed on a $LaAlO_3$(100) single crystal substrate. The cation ratio of precursor solution was Y:Ba:Cu=1:2.65:1.35. The distance between nozzle and substrate was 15 cm. Deposition temperature was ranging from $750^{\circ}C\;to\;800^{\circ}C$. Deposition pressure was 100 Torr, and oxygen partial pressure was varied from 10 Torr to 50 Torr. The microstructure, phase formation, texture development and superconducting properties of deposited films were largely changed with oxygen partial pressure. Deposited films showed a texture with(001) planes parallel to substrate plane. High quality film was obtained when film was deposited at $760^{\circ}C$ with an oxygen partial pressure of 30 Torr. The critical current density($J_c$) of the YBCO film was 1.75 $MA/cm^2$ at 77 K and self-field.

  • PDF